Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(16): 24662-24672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411917

ABSTRACT

This study delves into the repercussions of the 2023 earthquake in Turkey, particularity its impact on air pollution. A year post-event, it is evident that scientific literature has paid limited attention to monitoring the situation. However, the release of hazardous substances, such as asbestos, lead, and other toxins, from damaged structures poses a significant threat by contaminating nearby air, soil, and water sources, thereby jeopardizing ecosystems and public well-being. The improper disposal of waste post-earthquake and the presence of mining and oil refinery sites in the region contribute to potential air pollutants. These circumstances create challenging environments conducive to the spread of respiratory diseases, with potential long-term health and social consequences. Unfortunately, existing data gaps hinder a comprehensive understanding of the situation. This paper pioneers the reporting and analysis of data regarding potential sources of air pollution resulting from the earthquake in Turkey. It also pinpoints gaps in knowledge, outlining areas that demand further investigation. To effectively prevent and mitigate air pollution risks and associated health concerns linked to earthquakes, strategic recommendations are proposed. A key suggestion is the establishment of post-disaster air pollution monitoring systems capable of swiftly identifying emerging health issues, facilitating efficient responses, and curtailing potential long-term effects of the disaster. The paper underscores the necessity for continuous health monitoring of the affected population to mitigate possible adverse impacts on human health. These strategies play a pivotal role in reducing the likelihood of air pollution, supporting emergency response and recovery initiatives, and fostering new dedicated scientific studies.


Subject(s)
Air Pollutants , Air Pollution , Earthquakes , Humans , Turkey , Ecosystem , Air Pollution/analysis , Air Pollutants/analysis
2.
Molecules ; 29(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38257313

ABSTRACT

Electronic waste (e-waste) is one of the fastest-growing waste streams in the world and Europe is classified as the first producer in terms of per capita amount. To reduce the environmental impact of e-waste, it is important to recycle it. This work shows the possibility of reusing glassy substrates, derived from the MW-assisted acidic leaching of Waste Printed Circuit Boards (WPCBs), as an adsorbent material. The results revealed an excellent adsorption capability against methylene blue (MB; aqueous solutions in the concentration range 10-5 M-2 × 10-5 M, at pH = 7.5). Comparisons were performed with reference samples such as activated carbons (ACs), the adsorbent mostly used at the industrial level; untreated PCB samples; and ground glass slides. The obtained results show that MW-treated WPCB powder outperformed both ground glass and ground untreated PCBs in MB adsorption, almost matching AC adsorption. The use of this new adsorbent obtained through the valorization of e-waste offers advantages not only in terms of cost but also in terms of environmental sustainability.

3.
Sci Total Environ ; 912: 169026, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056656

ABSTRACT

The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Humans , Solid Waste/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Artificial Intelligence , Environment , Waste Disposal Facilities
4.
Materials (Basel) ; 16(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37297187

ABSTRACT

The carbonation of alkaline industrial wastes is a pressing issue that is aimed at reducing CO2 emissions while promoting a circular economy. In this study, we explored the direct aqueous carbonation of steel slag and cement kiln dust in a newly developed pressurized reactor that operated at 15 bar. The goal was to identify the optimal reaction conditions and the most promising by-products that can be reused in their carbonated form, particularly in the construction industry. We proposed a novel, synergistic strategy for managing industrial waste and reducing the use of virgin raw materials among industries located in Lombardy, Italy, specifically Bergamo-Brescia. Our initial findings are highly promising, with argon oxygen decarburization (AOD) slag and black slag (sample 3) producing the best results (70 g CO2/kg slag and 76 g CO2/kg slag, respectively) compared with the other samples. Cement kiln dust (CKD) yielded 48 g CO2/kg CKD. We showed that the high concentration of CaO in the waste facilitated carbonation, while the presence of Fe compounds in large amounts caused the material to be less soluble in water, affecting the homogeneity of the slurry.

5.
Environ Res ; 225: 115612, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36871942

ABSTRACT

The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.


Subject(s)
Air Pollution , COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , China
6.
Environ Res ; 217: 114805, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36375507

ABSTRACT

The carbonation of alkaline wastes is an interesting research field that may offer opportunities for CO2 reduction. However, the literature is mainly devoted to studying different waste sequestration capabilities, with lame attention to the reliability of the data about CO2 reduction, or to the possibilities to increase the amount of absorbed CO2. In this work, for the first time, the limitation of some methods used in literature to quantify the amount of sequestered CO2 is presented, and the advantages of using suitable XRD strategies to evaluate the crystalline calcium carbonate phases are demonstrated. In addition, a zero-waste approach, aiming to stabilize the waste by coupling the use of by-products and the possibility to obtain CO2 sequestration, was considered. In particular, for the first time, the paper investigates the differences in natural and accelerated carbonation (NC and AC) mechanisms, occurring when municipal solid waste incineration (MSWI) fly ash is stabilized by using the bottom ash with the same origin, and other by-products. The stabilization mechanism was attributed to pozzolanic reactions with the formation of calcium silicate hydrates or calcium aluminate hydrate phases that can react with CO2 to produce calcium carbonate phases. The work shows that during the AC, crystalline calcium carbonate was quickly formed by the reaction of Ca(OH)2 and CaClOH with CO2. On the contrary, in NC, carbonation occurred due to reactions also with the amorphous Ca. The sequestration capability of this technology, involving the mixing of waste and by-products, is up to 165 gCO2/Kg MSWI FA, which is higher than the literature data.


Subject(s)
Metals, Heavy , Refuse Disposal , Coal Ash , Incineration , Solid Waste/analysis , Carbon Dioxide/analysis , Metals, Heavy/analysis , Reproducibility of Results , Carbonates/analysis , Carbonates/chemistry , Calcium Carbonate/chemistry , Refuse Disposal/methods , Particulate Matter/chemistry
7.
Materials (Basel) ; 15(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500023

ABSTRACT

There are several recycling methods to treat discharged lithium-ion batteries, mostly based on pyrometallurgical and hydrometallurgical approaches. Some of them are promising, showing high recovery efficiency (over 90%) of strategic metals such as lithium, cobalt, and nickel. However, technological efficiency must also consider the processes sustainability in terms of environmental impact. In this study, some recycling processes of spent lithium-ion batteries were considered, and their sustainability was evaluated based on the ESCAPE "Evaluation of Sustainability of material substitution using CArbon footPrint by a simplifiEd approach" approach, which is a screening tool preliminary to the Life Cycle Assessment (LCA). The work specifically focuses on cobalt recovery comparing the sustainability of using inorganic or organic acid for the leaching of waste derived from lithium-ion batteries. Based on the possibility to compare different processes, for the first time, some considerations about technologies optimization have been done, allowing proposing strategies able to save chemicals. In addition, the energy mix of each country, to generate electricity has been considered, showing its influence on the sustainability evaluation. This allows distinguishing the countries using more low-carbon sources (nuclear and renewables) for a share of the electricity mix, where the recycling processes result more sustainable. Finally, this outcome is reflected by another indicator, the eco-cost from the virtual pollution model 99' proposed by Vogtländer, which integrates the monetary estimation of carbon footprint.

8.
Materials (Basel) ; 15(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35329499

ABSTRACT

The COVID-19 pandemic suddenly changed the lifestyle of billions of people. Face masks became indispensable to protect from the contagion providing a significant environmental impact. The aim of this work is to propose possible solutions to decrease masks' impact on the environment. For this reason, different masks (surgical and fabric) were considered, and the CO2 emissions associated with the mask materials production were calculated. Carbon Footprint (CF) for each material composing the masks was evaluated through the database Ces Selector 2019. The software Qgis (version 2.18.20) allows us to elaborate the CO2 emissions maps for each Italian region. Finally, for surgical masks, which are often imported from abroad, the CF related to transport was considered. It results that fabric masks are a sustainable solution to prevent contagion. The total CO2 emission associated with the use of fabric masks from the beginning of the pandemic (March 2020) to December 2021 resulted in about 7 kton compared to 350 kton for surgical masks.

9.
Environ Res ; 212(Pt A): 113193, 2022 09.
Article in English | MEDLINE | ID: mdl-35346657

ABSTRACT

SARS-CoV-2 virus (COVID-19) pandemic has impacted several countries, with also some differences at local levels. When lockdown restrictions were imposed, the concentrations of some air pollutants were reduced, as reported in some other cities in the world. This was often considered a positive by-product of the pandemic. However, often literature reporting the connection of air quality (AQ) and lockdown, suffers of limited and incomplete data analysis, not considering, for example, some confounding factors. This work presents a methodology, and the results of its application, to assess the impact of pandemic restrictions on AQ (in particular nitrogen oxides, NO2 and particulate matter, PM10) in spring 2020 in Brescia, located in one of the most affected areas in terms of virus diffusion and in one of the most polluted areas in Europe (Po Valley, Italy). In particular, the proposed methodology integrates data and AQ modelling simulations to distinguish between the changes in the PM10 and NO2 pollutants concentration that occurred due to the restriction measures and due to other factors, like spatial-temporal characteristics (for example the seasonality), meteorological factors, and governmental actions that were introduced in the past to improve the air quality. Results show that NO2 is strongly dependent to traffic emission. On the contrary, although the expected decrease in PM10 concentrations, the results highlight that the reduction of transport emission would not help to avoid severe air pollution, due to the other pollution sources that contribute to its origin. The results presented for the first time in this work are of particular interest because they may be used as a basis to investigate in more details the sources that can impact on the air quality in Brescia, with the aim to propose effective measures able to reduce it.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Cities , Communicable Disease Control , Environmental Monitoring/methods , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2
10.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771827

ABSTRACT

Phosphate rocks are a critical resource for the European Union, and alternative sources to assure the future production of a new generation of fertilizers are to be assessed. In this study, a statistical approach, combined with a sustainability evaluation for the recovery of materials from waste containing phosphorus (P), is presented. This work proposes a strategy to recover P and silica (SiO2) from rice husk poultry litter ash (RHPLA). The design of experiment (DoE) method was applied to maximize the P extraction using hydrochloric acid (HCl), with the aim to minimize the contamination that can occur by leachable heavy metals present in RHPLA, such as zinc (Zn). Two independent variables, the molar concentration of the acid, and the liquid-to-solid ratio (L/S) between the acid and RHPLA, were used in the experimental design to optimize the operating parameters. The statistical analysis showed that a HCl concentration of 0.34 mol/L and an L/S ratio of 50 are the best conditions to recover P with low Zn contamination. Concerning the SiO2, its content in RHPLA is too low to consider the proposed recovery process as advantageous. However, based on our analysis, this process should be sustainable to recover SiO2 when its content in the starting materials is more than 80%.

11.
Environ Res ; 202: 111681, 2021 11.
Article in English | MEDLINE | ID: mdl-34273363

ABSTRACT

On January 30, 2020, COVID-19 outbreak, detected for the first time in Wuhan (China), was declared by WHO a Public Health Emergency. In a strongly connected world, the consequent slowdown of the Chinese economy contributed to disrupt the global supply chains of several products. In a post-pandemic scenario, the expected rapid increase in demand of critical raw materials (associated with the transition to more green energy sources), coupled with the problems that some mining activities are relegated only in certain countries and regions, must be considered in a sustainable perspective. This work analyses the literature about (critical) raw materials and COVID-19, not only to present the impact of the pandemic on their supply, but also to propose some actions that should be pursued in a post-pandemic renaissance scenario, to increase raw materials availability, with great attention to most critical ones, in the frame of circular economy principles. The post-pandemic possibilities are evaluated and suitable actions are suggested to secure the raw materials availability for the foreseen increase of investments in crucial and strategic sectors, in accord with the UN Sustainable Development Goals (SDGs). The proposed actions can be summarized as policy, strategy, economy, and technology activities.


Subject(s)
COVID-19 , Pandemics , Energy-Generating Resources , Humans , SARS-CoV-2 , Sustainable Development
12.
Molecules ; 26(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807763

ABSTRACT

The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs' interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a "Sustainable Materials Partnership for SDGs" is envisaged for more suitable resource management in the future.


Subject(s)
Biocompatible Materials , Sustainable Development , Energy-Generating Resources , Environmental Pollutants/chemistry , Environmental Pollutants/isolation & purification , Food , Goals , Italy
13.
Materials (Basel) ; 13(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906837

ABSTRACT

This work proposes new eco-materials for the adsorption of diclofenac (DCF). The large consumption of this nonsteroidal anti-inflammatory drug combined with the inefficiency of wastewater treatment plants (WWTPs) leads to its presence in aquatic environments as an emerging pollutant. The adsorption technique is widely used for pharmaceutical removal. Moreover, due to the large effect of commercial adsorbents, in the frame of the Azure Chemistry approach, new sustainable materials are mandatory for removal as emerging pollutants. The work proposes three adsorbents that were obtained from different stabilization methods of fly ash derived from an incinerator plant; the stabilization techniques involved the use of various industrial by-products such as bottom ash, flue gas desulphurization residues, coal fly ash, and silica fume. The best performance, although less than activated carbon, was obtained by COSMOS (COlloidal Silica Medium to Obtain Safe inert: the case of incinerator fly ash), with a removal efficacy of approximately 76% with 15 g/L of material. Several advantages are expected not only from the DCF removal but also from an economic perspective (the newly obtained adsorbents are eco-materials, so they are cheaper in comparison to conventional adsorbents) and in terms of sustainability (no toxic reagents and no heating treatment are involved). This work highlights the adsorption performance of the new eco-materials and their potential use in WWTPs.

14.
Data Brief ; 28: 104970, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31890808

ABSTRACT

Municipal solid waste incineration (MSWI) provides significant benefits on waste treatment technologies. Nevertheless some by-products such as fly ash (FA) and bottom ash (Ash) are produced in the incineration plant. Indeed, FA is considered a toxic waste due to the presence of leachable heavy metals (i.e Zn, Cd, Pb, Hg) and metalloid (like As). This data article aims to investigate the reactivity of Ca(OH)2 and Mg(OH)2 as possible substitute of flue gas desulfurization (FGD) residues by mixing with FA, BA and silica fume through a low cost technology. To assess the immobilization process of heavy metals and metalloid, three different samples' compositions were prepared for Ca(OH)2 and Mg(OH)2 series, respectively. Elemental chemical analysis of leaching solutions were carried out by Total reflection X-Ray Fluorescence spectroscopy (TXRF). Data revealed that mixing municipal solid waste ashes with Mg(OH)2 decrease significantly Pb and Zn leachability after two months, and reduce their environmental impact in landfill.

15.
Front Chem ; 6: 534, 2018.
Article in English | MEDLINE | ID: mdl-30425984

ABSTRACT

The World Health Organization reports that every year several million people die prematurely due to air pollution. Poor air quality is a by-product of unsustainable policies in transportation, energy, industry, and waste management in the world's most crowded cities. Particulate matter (PM) is one of the major element of polluted air. PM can be composed by organic and inorganic species. In particular, heavy metals present in PM include, lead (Pb), mercury (Hg), cadmium, (Cd), zinc (Zn), nickel (Ni), arsenic (As), and molybdenum (Mo). Currently, vegetation is the only existing sustainable method to reduce anthropogenic PM concentrations in urban environments. In particular, the PM-retention ability of vegetation depends on the surface properties, related to the plant species, leaf and branch density, and leaf micromorphology. In this work, a new hybrid material called SUNSPACE (SUstaiNable materials Synthesized from by-Products and Alginates for Clean air and better Environment) is proposed for air PM entrapment. Candle burning tests are performed to compare SUNSPACE with Hedera Helix L. leafs with respect to their efficacy of reducing coarse and fine PM. The temporal variation of PM10 and PM2.5 in presence of the trapping materials, shows that Hedera Helix L. surface saturates more rapidly. In addition, the capability of SUNSPACE in ultrafine PM trapping is also demonstrated by using titanium dioxide nanoparticles with 25 nm diameter. Scanning electron microscope (SEM) and Transmission electron microscope (TEM) images of SUNSPACE after entrapment tests highlight the presence of collected nanoparticles until to about 0.04 mm in depth from the sample surface. N2 physisorption measurements allow to demonstrate the possibility to SUNSPACE regeneration by washing.

16.
Front Chem ; 6: 60, 2018.
Article in English | MEDLINE | ID: mdl-29616212

ABSTRACT

In this work a new mesoporous adsorbent material obtained from a natural, high abundant raw material and a high volume industrial by-product is presented. The material is consolidated by the gelling properties of alginate and by decomposition of sodium-bicarbonate controlled porosity at low temperatures (70-80°C) at different scale lengths. The structural, thermal, and morphological characterization shows that the material is a mesoporous organic-inorganic hybrid. The material is tested as adsorbent, showing high performances. Methylene blue, used as model pollutant, can be adsorbed and removed from aqueous solutions even at a high concentration with efficiency up to 94%. By coating the material with a 100 nm thin film of titania, good photodegradation performance (more than 20%) can be imparted. Based on embodied energy and carbon footprint of its primary production, the sustainability of the new obtained material is evaluated and quantified in respect to activated carbon as well. It is shown that the new proposed material has an embodied energy lower than one order of magnitude in respect to the one of activated carbon, which represents the gold standards. The versatility of the new material is also demonstrated in terms of its design and manufacturing possibilities In addition, this material can be printed in 3D. Finally, preliminary results about its ability to capture diesel exhaust particulate matter are reported. The sample exposed to diesel contains a large amount of carbon in its surface. At the best of our knowledge, this is the first time that hybrid porous materials are proposed as a new class of sustainable materials, produced to reduce pollutants in the wastewaters and in the atmosphere.

SELECTION OF CITATIONS
SEARCH DETAIL
...