Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Rev Med Pharmacol Sci ; 27(3 Suppl): 1-10, 2023 04.
Article in English | MEDLINE | ID: mdl-37129330

ABSTRACT

OBJECTIVE: Treacher Collins syndrome (TCS) is a rare congenital disorder of craniofacial development. TCS occurs with an incidence of 1:50,000, and more than 60% of TCS cases have no previous family history and arise as the result of de novo mutations. The high rate of de novo mutations, together with the extreme variability in the degree to which individuals can be affected, makes the provision of genetic counseling extremely complicated. Consequently, every case of TCS is unique and needs to be assessed individually. Patients with TCS frequently undergo multiple reconstructive surgeries from birth through adulthood, which rarely are fully corrective in the long-term. The nascent field of regenerative medicine offers the promise to improve some of these treatments. In particular, structural fat grafting (SFG) seems to be a good strategy not only to restore the normal volume and contour of the face, but also to provide a source of adipose-derived stem cells (ADSCs) with a multilineage differentiation potential. In this work, we present genetical analyses of ADSC affected by TCS. MATERIALS AND METHODS: ADSCs from were analyzed for their stemness properties and shared many characteristics with those of a healthy subject. Screening of the genome of the TCS patient using array-Comparative Genomic Hybridization allowed us to identify some chromosomal imbalances that are probably associated with TCS. RESULTS: We found that some alterations, involving the TIMELESS gene, were usually associated with embryonic stem cells. CONCLUSIONS: With the aim to improve the final results, we need to consider combining knowledge of genetic alterations and expression profiles as a fundamental step before starting with surgical procedures.


Subject(s)
Mandibulofacial Dysostosis , Plastic Surgery Procedures , Female , Humans , Mandibulofacial Dysostosis/etiology , Mandibulofacial Dysostosis/genetics , Comparative Genomic Hybridization , Mutation , Stem Cells
2.
Eur Rev Med Pharmacol Sci ; 26(3 Suppl): 11-20, 2022 12.
Article in English | MEDLINE | ID: mdl-36591886

ABSTRACT

OBJECTIVE: A hernia of the abdominal wall is an opening of the muscles in the abdominal wall, which is frequently treated via the application of a surgical mesh. The purpose of this research is to study how human adipose-derived stem cells (hADSCs) interact with Phasix™ Mesh, a commercially available mesh for hernia repair. Studying how cells derived from the abdominal region behave with Phasix™ Mesh is crucial to improve the state of the art of current surgery and achieve effective tissue restoration. MATERIALS AND METHODS: hADSCs were seeded onto Phasix™ Mesh, a fully resorbable surgical mesh of poly (4-hydroxybutyric acid) (P4HB). Cell viability was assessed through MTT assay, and cell growth and adhesion were evaluated via multiple imaging techniques and gene imaging profiling. RESULTS: Results confirm that the nets support cells proliferation, extracellular matrix production and increasing of angiogenetic factor. CONCLUSIONS: Butyric acid-based nets are promising scaffolds for abdominal wall reconstruction.


Subject(s)
Abdominal Wall , Hernia, Ventral , Humans , Abdominal Wall/surgery , Tissue Engineering , Butyric Acid , Herniorrhaphy/methods , Prostheses and Implants , Surgical Mesh , Hernia, Ventral/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...