Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(15): 151402, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683005

ABSTRACT

Vorticity has recently been suggested to be a property of highly spinning black holes. The connection between vorticity and limiting spin represents a universal feature shared by objects of maximal microstate entropy, so-called saturons. Using Q-ball-like saturons as a laboratory for black holes, we study the collision of two such objects and find that vorticity can have a large impact on the emitted radiation as well as on the charge and angular momentum of the final configuration. As black holes belong to the class of saturons, we expect that the formation of vortices can cause similar effects in black hole mergers, leading to macroscopic deviations in gravitational radiation. This could leave unique signatures detectable with upcoming gravitational-wave searches, which can thereby serve as a portal to macroscopic quantum effects in black holes.

2.
Phys Rev Lett ; 129(6): 061302, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36018670

ABSTRACT

We argue that black holes admit vortex structure. This is based both on a graviton-condensate description of a black hole as well as on a correspondence between black holes and generic objects with maximal entropy compatible with unitarity, so-called saturons. We show that due to vorticity, a Q-ball-type saturon of a calculable renormalizable theory obeys the same extremality bound on the spin as the black hole. Correspondingly, a black hole with extremal spin emerges as a graviton condensate with vorticity. This offers a topological explanation for the stability of extremal black holes against Hawking evaporation. Next, we show that in the presence of mobile charges, the global vortex traps a magnetic flux of the gauge field. This can have macroscopically observable consequences. For instance, the most powerful jets observed in active galactic nuclei can potentially be accounted for. As a signature, such emissions can occur even without a magnetized accretion disk surrounding the black hole. The flux entrapment can provide an observational window to various hidden sectors, such as millicharged dark matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...