Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mikrochim Acta ; 191(6): 359, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819653

ABSTRACT

Electrogenerated chemiluminescence (ECL) stands out as a remarkable phenomenon of light emission at electrodes initiated by electrogenerated species in solution. Characterized by its exceptional sensitivity and minimal background optical signals, ECL finds applications across diverse domains, including biosensing, imaging, and various analytical applications. This review aims to serve as a comprehensive guide to the utilization of ECL in analytical applications. Beginning with a brief exposition on the theory at the basis of ECL generation, we elucidate the diverse systems employed to initiate ECL. Furthermore, we delineate the principal systems utilized for ECL generation in analytical contexts, elucidating both advantages and challenges inherent to their use. Additionally, we provide an overview of different electrode materials and novel ECL-based protocols tailored for analytical purposes, with a specific emphasis on biosensing applications.

2.
ACS Sens ; 9(3): 1482-1488, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38416572

ABSTRACT

A pH colorimetric sensor array (CSA) was prepared on a nitrocellulose membrane and used for accurate pH measurement in highly concentrated saline solutions. The CSAs consisted of sensing spots made of a suitable OrMoSil polymer prepared from organo-fluorinated-silane precursors and/or organosilane with tetraethyl orthosilicate hosting an acid-base indicator. Four CSAs were prepared: D, 1F, 2F, and 3F. In D, a nonfluorinated organosilane was present. From 1F to 3F, the concentration of the fluorinated organosilane increased and improved the pH measurement accuracy in highly saline concentrations. No recalibrations were required, and the analytical signal was stable in time. D, 1F, 2F, and 3F were deposited in triplicate, and they were prepared to work in the seawater pH interval (7.50-8.50). The use of fluorinated precursors led to a lower pH prediction error and tailored the interval of the CSA at more basic pH values so that the inflection points of the sigmoidal calibrations of D, 1F, 2F, and 3F moved from 6.97 to 7.98. The overall pH prediction error was 0.10 pH (1F), 0.02 pH (2F), and 0.04 pH units (3F). The CSAs were stable, reversible, reusable, and independent of salinity (S) between 20 and 40. The performances of the CSA were compared with those of a glass electrode, whose pHNIST values were converted in the pHSWS scale through a conversion equation. Being unaffected by the typical drawback of the glass electrode, the CSAs can be used directly in seawater real samples, and it validated the proposed conversion equation.


Subject(s)
Colorimetry , Organosilicon Compounds , Hydrogen-Ion Concentration , Seawater , Electrodes , Saline Solution
3.
Adv Sci (Weinh) ; 10(6): e2204562, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36599685

ABSTRACT

Silicon carbide (SiC) is one of the hardest known materials. Its exceptional mechanical properties combined with its high thermal conductivity make it a very attractive material for a variety of technological applications. Recently, it is discovered that two-layer epitaxial graphene films on SiC can undergo a pressure activated phase transition into a sp3 diamene structure at room temperature. Here, it is shown that epitaxial graphene films grown on SiC can increase the hardness of SiC up to 100% at low loads (up to 900 µN), and up to 30% at high loads (10 mN). By using a Berkovich diamond indenter and nanoindentation experiments, it is demonstrated that the 30% increase in hardness is present even for indentations depths of 175 nm, almost three hundred times larger than the graphene film thickness. The experiments also show that the yield point of SiC increases up to 77% when the SiC surface is coated with epitaxial graphene. These improved mechanical properties are explained with the formation of diamene under the indenter's pressure.

4.
Adv Healthc Mater ; 12(10): e2201503, 2023 04.
Article in English | MEDLINE | ID: mdl-36565136

ABSTRACT

Reproducing in vitro the complex multiscale physical features of human tissues creates novel biomedical opportunities and fundamental understanding of cell-environment interfaces and interactions. While stiffness has been recognized as a key driver of cell behavior, systematic studies on the role of stiffness have been limited to values in the KPa-MPa range, significantly below the stiffness of bone. Here, a platform enabling the tuning of the stiffness of a biocompatible polymeric interface up to values characteristic of human bone is reported, which are in the GPa range, by using extremely thin polymer films on glass and cross-linking the films using ultraviolet (UV) light irradiation. It is shown that a higher stiffness is related to better adhesion, proliferation, and osteogenic differentiation, and that it is possible to switch on/off cell attachment and growth by solely tuning the stiffness of the interface, without any surface chemistry or topography modification. Since the stiffness is tuned directly by UV irradiation, this platform is ideal for rapid and simple fabrication of stiffness patterns and gradients, thus representing an innovative tool for combinatorial studies of the synergistic effect of tissue environmental cues on cell behavior, and creates new opportunities for next-generation biosensors, single-cell patterning, and lab-on-a-chip devices.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Bone Matrix , Bone and Bones , Cell Differentiation
5.
Biosens Bioelectron ; 209: 114165, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35417851

ABSTRACT

Detection of nucleic acids is crucial in many medical applications, and in particular for monitoring infectious diseases, as it has become perfectly clear after the pandemic infection of COVID-19. In this context, the development of innovative detection methods based on signal-amplification rather than analyte-amplification represents a significant breakthrough compared to existing PCR-based methodologies, allowing the development of new nucleic acid detection technologies suitable to be integrated in portable and low-cost sensor devices while keeping high sensitivities, thus enabling massive diagnostic screening. In this work, we present a novel molecular sensor for the ultrasensitive PCR-free detection of Hepatitis B Virus (HBV) based on electrochemiluminescence (ECL). Thanks to the combination of surface cooperative hybridization scheme with ECL detection strategy, our novel DNA sensor is able to detect HBV genome - both synthetic and extracted - with the unprecedented limit of detection (LoD) of 0.05 cps µL-1 for extracted sample, that is even lower than the typical LoD of PCR methodologies. The detection concept presented here for HBV detection is very versatile and can be extended to other pathogens, paving the way for future development of rapid molecular test for infectious diseases, both viral and bacterial, in Point-of-Care (PoC) format.


Subject(s)
Biosensing Techniques , COVID-19 , Communicable Diseases , Biosensing Techniques/methods , COVID-19/diagnosis , Genome, Viral , Hepatitis B virus/genetics , Humans , Polymerase Chain Reaction
7.
Anal Chem ; 93(30): 10397-10402, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34213888

ABSTRACT

Electrochemiluminescence (ECL) is a powerful transduction technique that has rapidly gained importance as a powerful analytical technique. Since ECL is a surface-confined process, a comprehensive understanding of the generation of ECL signal at a nanometric distance from the electrode could lead to several highly promising applications. In this work, we explored the mechanism underlying ECL signal generation on the nanoscale using luminophore-reporter-modified DNA-based nanoswitches (i.e., molecular beacon) with different stem stabilities. ECL is generated according to the "oxidative-reduction" strategy using tri-n-propylamine (TPrA) as a coreactant and Ru(bpy)32+ as a luminophore. Our findings suggest that by tuning the stem stability of DNA nanoswitches we can activate different ECL mechanisms (direct and remote) and, under specific conditions, a "digital-like" association curve, i.e., with an extremely steep transition after the addition of increasing concentrations of DNA target, a large signal variation, and low preliminary analytical performance (LOD 22 nM for 1GC DNA-nanoswtich and 16 nM for 5GC DNA-nanoswitch). In particular, we were able to achieve higher signal gain (i.e., 10 times) with respect to the standard "signal-off" electrochemical readout. We demonstrated the copresence of two different ECL generation mechanisms on the nanoscale that open the way for the design of customized DNA devices for highly efficient dual-signal-output ratiometric-like ECL systems.


Subject(s)
DNA , Luminescent Measurements , Electrodes , Photometry
8.
Adv Sci (Weinh) ; 8(13): 2100125, 2021 07.
Article in English | MEDLINE | ID: mdl-34258161

ABSTRACT

Carbon dots (CDs), defined by their size of less than 10 nm, are a class of photoluminescent (PL) and electrochemiluminescent (ECL) nanomaterials that include a variety of carbon-based nanoparticles. However, the control of their properties, especially ECL, remains elusive and afflicted by a series of problems. Here, the authors report CDs that display ECL in water via coreactant ECL, which is the dominant mechanism in biosensing applications. They take advantage of a multicomponent bottom-up approach for preparing and studying the luminescence properties of CDs doped with a dye acting as PL and ECL probe. The dependence of luminescence properties on the surface chemistry is further reported, by investigating the PL and ECL response of CDs with surfaces rich in primary, methylated, or propylated amino groups. While precursors that contribute to the core characterize the PL emission, the surface states influence the efficiency of the excitation-dependent PL emission. The ECL emission is influenced by surface states from the organic shell, but states of the core strongly interact with the surface, influencing the ECL efficiency. These findings offer a framework of pre- and post-synthetic design strategies to improve ECL emission properties, opening new opportunities for exploring biosensing applications of CDs.

9.
Angew Chem Int Ed Engl ; 59(49): 21858-21863, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33000888

ABSTRACT

The combination of highly sensitive techniques such as electrochemiluminescence (ECL) with nanotechnology sparked new analytical applications, in particular for immunoassay-based detection systems. In this context, nanomaterials, particularly dye-doped silica nanoparticles (DDSNPs) are of high interest, since they can offer several advantages in terms of sensitivity and performance. In this work we synthesized two sets of monodispersed and biotinylated [Ru(bpy)3 ]2+ -doped silica nanoparticles, named bio-Triton@RuNP and bio-Igepal@RuNP, obtained following the reverse microemulsion method using two different types of nonionic surfactants. Controlling the synthetic procedures, we were able to obtain nanoparticles (NPs) offering highly intense signal, using tri-n-propylamine (TPrA) as coreactant, with bio-Triton@RuNps being more efficient than bio-Igepal@RuNP.


Subject(s)
Coloring Agents/chemistry , Immunoassay , Nanoparticles/chemistry , Organometallic Compounds/chemistry , Silicon Dioxide/chemistry , Coloring Agents/chemical synthesis , Electrochemical Techniques , Humans , Luminescent Measurements , Molecular Structure , Nanotechnology , Particle Size , Surface Properties
10.
Biosensors (Basel) ; 10(8)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764306

ABSTRACT

Electrochemical sensors are devices capable of detecting molecules and biomolecules in solutions and determining the concentration through direct electrical measurements. These systems can be miniaturized to a size less than 1 µm through the creation of small-size arrays of nanoelectrodes (NEA), offering advantages in terms of increased sensitivity and compactness. In this work, we present the fabrication of an electrochemical platform based on an array of nanoelectrodes (NEA) and its possible use for the detection of antigens of interest. NEAs were fabricated by forming arrays of nanoholes on a thin film of polycarbonate (PC) deposited on boron-doped diamond (BDD) macroelectrodes by thermal nanoimprint lithography (TNIL), which demonstrated to be a highly reliable and reproducible process. As proof of principle, gliadin protein fragments were physisorbed on the polycarbonate surface of NEAs and detected by immuno-indirect assay using a secondary antibody labelled with horseradish peroxidase (HRP). This method allows a successful detection of gliadin, in the range of concentration of 0.5-10 µg/mL, by cyclic voltammetry taking advantage from the properties of NEAs to strongly suppress the capacitive background signal. We demonstrate that the characteristics of the TNIL technology in the fabrication of high-resolution nanostructures together with their low-cost production, may allow to scale up the production of NEAs-based electrochemical sensing platform to monitor biochemical molecules for both food and biomedical applications.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Electrodes , Nanostructures , Nanotechnology , Polymers , Printing
11.
Nat Commun ; 11(1): 2668, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472057

ABSTRACT

Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.


Subject(s)
Biomarkers/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrochemistry/methods , Luminescent Measurements/methods , Chemistry Techniques, Analytical , Chemistry, Physical/methods , Luminescence
12.
Anal Bioanal Chem ; 411(19): 4375-4382, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31020369

ABSTRACT

The use of electrochemiluminescence (ECL), i.e., chemiluminescence triggered by electrochemical stimulus, as emitting light source for microscopy is an emerging approach with different applications ranging from the visualization of nanomaterials to cell mapping. In this trend article, we give an overview of the state of the art in this new field with the purpose to illustrate all the possible applications so far explored as well as describing the mechanism underlying this transduction technique. The results discussed here would highlight the great potential of the combination between ECL and microscopy and how this marriage can turn into an innovative approach with specific application in analytical sciences. Graphical abstract.


Subject(s)
Electrochemical Techniques/methods , Luminescence , Luminescent Measurements/methods , Microscopy/methods , Electrodes , Nanostructures , Single-Cell Analysis
13.
Anal Bioanal Chem ; 408(25): 7085-94, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27039202

ABSTRACT

Nanoelectrode arrays (NEAs) are increasingly applied for a variety of electroanalytical applications; however, very few studies dealt with the use of NEAs as an electrochemical generator of electrogenerated chemiluminescence (ECL). In the present study, arrays of nanodisc and nanoband electrodes with different dimensions and inter-electrode distances were fabricated by e-beam lithography on a polycarbonate layer deposited on boron-doped diamond (BDD) substrates. In particular, NEAs with 16 different geometries were fabricated on the same BDD sample substrate obtaining a multiple nanoelectrode and ultramicroelectrode array platform (MNEAP). After electrochemical and morphological characterization, the MNEAP was used to capture simultaneously with a single image the characteristic behaviour of ECL emission from all the 16 arrays. Experiments were performed using Ru(bpy)3 (2+) as the ECL luminophore and tri-n-propylamine (TPrA) as the co-reactant. With a relatively limited number of experiments, such an imaging procedure allowed to study the role that geometrical and mechanistic parameters play on ECL generation at NEAs. In particular, at high concentrations of TPrA, well-separated individual ECL spots or bands revealed an ECL signal which forms a pattern matching the nanofabricated structure. The analysis of the imaging data indicated that the thickness of the ECL-emitting zone at each nanoelectrode scales inversely with the co-reactant concentration, while significantly stronger ECL signals were detected for NEAs operating under overlap conditions.

14.
Nat Genet ; 47(6): 607-14, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25938942

ABSTRACT

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Subject(s)
Carrier Proteins/metabolism , Caspase 1/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Receptors, Glucocorticoid/metabolism , Adolescent , Antineoplastic Agents, Hormonal/pharmacology , Base Sequence , Child , Child, Preschool , DNA Methylation , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Infant , Infant, Newborn , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasm Recurrence, Local/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prednisolone/pharmacology , Proteolysis , Transcription, Genetic , Tumor Cells, Cultured , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...