Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Biotechnol ; 33(5): 1195-1205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38440680

ABSTRACT

This study focused on optimizing the fermentation-based production of Exopolysaccharides (EPS) from Enterococcus faecium F58 initially isolated from traditional Moroccan Jben, a fresh goat cheese. Using the central composite design, yeast extract, MnSO4, and time affect EPS concentration. The highest experimental and predicted EPS production yields were 2.46 g/L ± 0.38 and 2.86 g/L, respectively. Optimal concentrations of yeast extract (4.46 g/L) and MnSO4 (0.011 g/L) were identified after 26 h at 30 °C. Characterization of EPS was conducted using SEM with EDX, XRD, and FTIR analyses. These tests revealed a specific morphology and an amorphous structure. Additionally, thermogravimetric analysis indicated adequate EPS stability up to 200 °C with anti-adhesion properties against different pathogens. This study offers valuable insights into the optimized production of EPS from Enterococcus faecium F58, which exhibits significant structural and functional properties for various applications in the food and biotechnology industries. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01424-9.

2.
Braz J Microbiol ; 55(2): 1131-1138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319530

ABSTRACT

Pathogenic bacterial biofilms present significant challenges, particularly in food safety and material deterioration. Therefore, using Enterococcus mundtii A2, known for its antagonistic activity against pathogen adhesion, could serve as a novel strategy to reduce pathogenic colonization within the food sector. This study aimed to investigate the biofilm-forming ability of E. mundtii A2, isolated from camel milk, on two widely used stainless steels within the agri-food domain and to assess its anti-adhesive properties against various pathogens, especially on stainless steel 316L. Additionally, investigations into auto-aggregation and co-aggregation were also conducted. Plate count methodologies revealed increased biofilm formation by E. mundtii A2 on 316L, followed by 304L. Scanning electron microscopy (SEM) analysis revealed a dense yet thin biofilm layer, playing a critical role in reducing the adhesion of L. monocytogenes CECT 4032 and Staphylococcus aureus CECT 976, with a significant reduction of ≈ 2 Log CFU/cm2. However, Gram-negative strains, P. aeruginosa ATCC 27853 and E. coli ATCC 25922, exhibit modest adhesion reduction (~ 0.7 Log CFU/cm2). The findings demonstrate the potential of applying E. mundtii A2 biofilms as an effective strategy to reduce the adhesion and propagation of potentially pathogenic bacterial species on stainless steel 316L.


Subject(s)
Bacterial Adhesion , Biofilms , Enterococcus , Stainless Steel , Biofilms/drug effects , Biofilms/growth & development , Bacterial Adhesion/drug effects , Enterococcus/physiology , Enterococcus/drug effects , Animals , Food Microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Antibiosis , Listeria monocytogenes/drug effects , Listeria monocytogenes/physiology , Listeria monocytogenes/growth & development , Milk/microbiology
3.
Curr Microbiol ; 80(7): 216, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37198525

ABSTRACT

Enterococcus species are commensal organisms of the gastrointestinal tract and can also be isolated from traditional food products. They are used as probiotics in animals and less often in humans. This study aimed to investigate the antibacterial and anti-adhesive activities of twelve food-origin Enterococcus spp. biofilms on stainless steel AISI 316 L against foodborne pathogens, including Listeria monocytogenes CECT4032, Pseudomonas aeruginosa ATCC27853, and Escherichia coli ATCC25922. The antimicrobial and co-aggregation abilities of Enterococcus spp. were evaluated using spots-agar test and spectrophotometry aggregation assay, respectively. The anti-adhesive activity of selected strains on pathogenic bacteria was tested using serial dilution technique. Enterococci strains in planktonic mode showed strong inhibition activity against different pathogens tested with a significant difference in co-aggregation capacity. Moreover, L. monocytogenes and E. coli presented a low auto-aggregation rate compared to P. aeruginosa, which showed an amount of 11.25%. Scanning electron microscopy (SEM) revealed that biofilm biomass of Enterococcus spp. increased after 10 days. The thick layer of enterococci biofilms on AISI 316 L caused a low adhesion of L. monocytogenes, resulting in a reduction of approximately 2.8 log CFU/cm² for some selected strains. Additionally, Enterococcus monocultures' biofilms were more efficient than polymicrobial cultures (a cocktail of enterococci strains) in controlling pathogen adhesion. These results indicate that monocultures of Enterococcus spp. biofilms could be used to prevent the adhesion of pathogenic bacteria on AISI 316 L.


Subject(s)
Anti-Infective Agents , Listeria monocytogenes , Humans , Animals , Enterococcus , Escherichia coli , Colony Count, Microbial , Biofilms , Food Microbiology , Stainless Steel/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...