Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 44(13): 2577-2586, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33909950

ABSTRACT

Adsorption mechanisms of caffeine, quercetin, and phenol as test substances in various chromatographic systems have been analyzed. The investigations were conducted using three different chromatographic columns packed with polar bonded stationary phases, that is, amide, amine, and zwitterionic. Methanol-water and acetonitrile-water systems with different organic solvent contents have been used as mobile phases. On the basis of adsorption isotherms obtained for the tested systems, Scatchard plots and adsorption energy distributions have been determined. The most likely retention mechanisms have been discussed. The results of investigations indicate that (i) the surfaces of tested adsorbents are energetically heterogeneous, and (ii) the main role in sorption mechanism is played by low-energy sites.

2.
J Chromatogr A ; 1216(38): 6560-74, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19640545

ABSTRACT

Heat due to viscous friction is generated in chromatographic columns. When these columns are operated at high flow rates, under a high inlet pressure, this heat causes the formation of significant axial and radial temperature gradients. Consequently, these columns become heterogeneous and several physico-chemical parameters, including the retention factors and the parameters of the mass transfer kinetics of analytes are no longer constant along and across the columns. A robust modeling of the distributions of the physico-chemical parameters allows the analysis of the impact of the heat generated on column performance. We developed a new model of the coupled heat and mass transfers in chromatographic columns, calculated the axial and radial temperature distributions in a column, and derived the distributions of the viscosity and the density of the mobile phase, hence of the axial and radial mobile phase velocities. The coupling of the mass and the heat balances in chromatographic columns was used to model the migration of a compound band under linear conditions. This process yielded the elution band profiles of analytes, hence the column efficiency under two different sets of experimental conditions: (1) the column is operated under natural convection conditions; (2) the column is dipped in a stream of thermostated fluid. The calculated results show that the column efficiency is remarkably lower in the second than in the first case. The inconvenience of maintaining constant the temperature of the column wall (case 2) is that retention factors and mobile phase velocities vary much more significantly across the column than if the column is kept under natural convection conditions (case 1).

3.
J Sep Sci ; 31(13): 2417-23, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18601224

ABSTRACT

The influence of the mobile-phase composition on the retention of eight model substances in different RP-HPLC systems with a C(30) alkyl bonded stationary phase has been studied. The aim of this study was to compare the performance of four valuable retention models assuming the partition and adsorption mechanism of retention. All the models were verified for different experimental data by four criteria: the sum of squared differences between the experimental and theoretical data; the approximation of the standard deviation; the Fisher test; and the F-test ratio.

4.
J Chromatogr Sci ; 45(1): 6-15, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17254377

ABSTRACT

Ion-exclusion chromatography (IEC) finds applications in various different analytical separations of weak acids. Pure, deionized water or a diluted, aqueous solution of a strong mineral acid (such as, e.g., sulphuric acid) is used as the mobile phase, whereas a typical stationary phase is a strongly acidic resin in the H(+) form (e.g., the sulfonated polystyrene-divinylbenzene resin with a high ion-exchange capacity, provided by the sulfonic acid groups). When pure water is used as the mobile phase, then the characteristic leading (i.e., frontally tailing) peaks are obtained, and the retention depends mainly on the concentration of the analyte. An alternative technique is vacancy ion-exclusion chromatography (v-IEC), in which the column is equilibrated with the sample solution, flowing as the mobile phase through the system, and pure water is injected as the sample. In this case, the symmetrical vacant peaks are obtained. The aim of this paper is to describe the retention mechanism in IEC and v-IEC for the adsorptive and nonadsorptive acids in analytical and concentration overload conditions, with pure water and the diluted sulphuric acid solution as the two different mobile phases. The retention times and the peak shapes predicted by the derived equations remain in a good qualitative and quantitative agreement with the experimental data. The model proposed in this paper predicts the new features characteristic of IEC for the adsorptive acids. These are, namely, an increase in the retention time of the peak apexes (up to a certain level and concurring with an increase in the acid concentration), followed by a subsequent decrease of the retention time (with the further growth of the acid concentration in the eluent). Similar changes in the retention time observed for v-IEC in the specific adsorption conditions were also correctly predicted by the model.

5.
J Sep Sci ; 28(6): 566-74, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15881087

ABSTRACT

The retention of a solute in RP chromatography is a very complex process which depends on many factors. Therefore, the study of the influence of a mobile phase modifier concentration on the retention in different reversed phase chromatographic systems is very important for understanding the rules governing retention and mechanisms of substance separation in a chromatographic process. Composition changes and the nature of mobile phases enable tuning of the separated analytes' retention over a wide range of retention parameters and optimization of the chromatographic process as well. Optimization of the chromatographic process can be achieved by several different methods; one of them is the so-called interpretative strategy. The key approach adopted in this strategy is the implementation of adequate retention models that couple the retention of solute with the composition of a mixed mobile phase. The use of chemically bonded stationary phases composed of partially non-bonded silica matrix and organic ligands bonded to its surface in everyday chromatography practice leads to questions of the correct definition of the retention model and the dominant retention mechanism in such chromatographic systems. The retention model for an accurate prediction of retention factor as a function of modifier concentration and the heterogeneity of the adsorbent surface should be taken into consideration. In this work the influence of mobile-phase composition on the retention of sixteen model substances such as phenols, quinolines, and anilines used as test analytes in different RP-TLC systems with CN-, NH2-, and Diol-silica polar bonded stationary phases has been studied. The aim of this study is to compare the performance of three valuable retention models assumed as the partition, adsorption/partition, and adsorption mechanism of retention. All the models were verified for different RP-TLC systems by three statistical criteria. The results of investigations presented in this work demonstrate that the best agreement between the experimental and calculated Rf values was obtained by the use of new-generation retention models, which assume heterogeneity of adsorbent surface. The results reported here show that heterogeneity of the adsorbent surface may be important in analysis of the elution process in liquid chromatography. Consideration of the goodness of fit for the experimental data to the examined retention models is in conformity with the adsorption mechanism of retention on all polar bonded stationary phases in most eluent systems for most investigated compounds.

6.
J Chromatogr Sci ; 42(9): 457-63, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15693184

ABSTRACT

For the purpose of description of the adsorption process of amylbenzene on a C8-, C18-, and C30-bonded silica stationary phase with methanol-water (80:20, v/v) as the mobile phase, a novel adsorption model (called the cluster isotherm model) is used. The model assumes the possibility of independent adsorption of analyte clusters on the longer C30 and shorter C8 chains. The validation of the proposed isotherm is made by comparison of experimental breakthrough and peak profiles obtained for RP-8e and RP-30 columns at a temperature of 24 degrees C and for RP-18e at a temperature range of 7-60 degrees C, with a theoretical simulation using the Transport-Dispersive model.

7.
J Chromatogr Sci ; 41(6): 289-94, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935299

ABSTRACT

The influence of mobile phase composition on the retention of selected test analytes in different normal- and reversed-phase chromatographic systems is studied. A novel adsorption model for an accurate prediction of the analyte retention in the column chromatography with binary mobile phase is proposed. Performance of the model is compared with the retention model reported in the literature. Both models are verified for different HPLC systems by use of three criteria: (a). the sum of squared differences between the experimental and theoretical data, (b). approximation of the standard deviation, and (c). the Fisher test.

8.
J Chromatogr Sci ; 40(10): 575-80, 2002.
Article in English | MEDLINE | ID: mdl-12515361

ABSTRACT

The dependence on mobile phase composition of the retention of selected test analytes in different normal- and reversed-phase chromatographic systems is studied. The aim of this study is to compare the performance of six valuable retention models reported in the literature with a new empirical equation, which is first introduced in this study. All of these models are compared for different thin-layer chromatographic and high-performance liquid chromatographic systems by use of three criteria: the sum of the squared differences between the experimental and theoretical data, approximation of the standard deviation, and the Fisher test.

SELECTION OF CITATIONS
SEARCH DETAIL
...