Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Densitom ; 22(4): 517-543, 2019.
Article in English | MEDLINE | ID: mdl-31519473

ABSTRACT

This position development conference (PDC) Task Force examined the assessment of bone status in orthopedic surgery patients. Key questions included which orthopedic surgery patients should be evaluated for poor bone health prior to surgery and which subsets of patients are at high risk for poor bone health and adverse outcomes. Second, the reliability and validity of using bone densitometry techniques and measurement of specific geometries around the hip and knee before and after arthroplasty was determined. Finally, the use of computed tomography (CT) attenuation coefficients (Hounsfield units) to estimate bone quality at anatomic locations where orthopedic surgery is performed including femur, tibia, shoulder, wrist, and ankle were reviewed. The literature review identified 665 articles of which 198 met inclusion exclusion criteria and were selected based on reporting of methodology, reliability, or validity results. We recommend that the orthopedic surgeon be aware of established ISCD guidelines for determining who should have additional screening for osteoporosis. Patients with inflammatory arthritis, chronic corticosteroid use, chronic renal disease, and those with history of fracture after age 50 are at high risk of osteoporosis and adverse events from surgery and should have dual energy X-ray absorptiometry (DXA) screening before surgery. In addition to standard DXA, bone mineral density (BMD) measurement along the femur and proximal tibia is reliable and valid around implants and can provide valuable information regarding bone remodeling and identification of loosening. Attention to positioning, selection of regions of interest, and use of special techniques and software is required. Plain radiographs and CT provide simple, reliable methods to classify the shape of the proximal femur and to predict osteoporosis; these include the Dorr Classification, Cortical Index, and critical thickness. Correlation of these indices to central BMD is moderate to good. Many patients undergoing orthopedic surgery have had preoperative CT which can be utilized to assess regional quality of bone. The simplest method available on most picture archiving and communications systems is to simply measure a regions of interest and determine the mean Hounsfield units. This method has excellent reliability throughout the skeleton and has moderate correlation to DXA based on BMD. The prediction of outcome and correlation to mechanical strength of fixation of a screw or implant is unknown.


Subject(s)
Absorptiometry, Photon/standards , Bone Density , Bone Diseases/diagnosis , Consensus Development Conferences as Topic , Orthopedic Procedures/methods , Bone Diseases/surgery , Humans
2.
J Bone Miner Res ; 34(12): 2213-2219, 2019 12.
Article in English | MEDLINE | ID: mdl-31411768

ABSTRACT

In the randomized, placebo-controlled, double-blind phase 3 ACTIVE study (NCT01343004), 18 months of abaloparatide 80 µg daily (subcutaneous injection) in postmenopausal women at risk of osteoporotic fracture significantly reduced the risk of vertebral, nonvertebral, clinical, and major osteoporotic fractures and significantly increased bone mineral density (BMD) versus placebo regardless of baseline risk factors. Women from the abaloparatide and placebo groups who completed ACTIVE were eligible for ACTIVExtend (NCT01657162), in which all enrollees received sequential, open-label monotherapy with alendronate 70 mg once weekly for up to 24 months. This prespecified analysis evaluated whether fracture risk reductions and bone mineral density (BMD) gains associated with abaloparatide during ACTIVE persisted through the full 43-month ACTIVE-ACTIVExtend study period in nine prespecified baseline risk subgroups. Baseline risk subgroups included BMD T-score at the lumbar spine, total hip, and femoral neck (≤ - 2.5 versus > - 2.5 and ≤ -3.0 versus > - 3.0), history of nonvertebral fracture (yes/no), prevalent vertebral fracture (yes/no), and age (<65 versus 65 to <75 versus ≥75 years). Forest plots display treatment effect. Treatment-by-subgroup interactions were tested using the Breslow-Day test, Cox proportional hazards model, and ANCOVA model. After the combined ACTIVE-ACTIVExtend study period, reductions in relative risk for new vertebral, nonvertebral, clinical, and major osteoporotic fractures were greater among patients in the abaloparatide/alendronate group than among those in the placebo/alendronate group across all nine baseline risk subgroups. BMD gains at the lumbar spine, total hip, and femoral neck were greater in the abaloparatide/alendronate group versus the placebo/alendronate group. No clinically meaningful interaction between treatment assignment and any baseline risk variable was observed. The sequence of abaloparatide for 18 months followed by alendronate for up to 24 months appears to be an effective treatment option for a wide range of postmenopausal women at risk for osteoporotic fractures. © 2019 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc.


Subject(s)
Alendronate/therapeutic use , Bone Density , Osteoporotic Fractures/drug therapy , Osteoporotic Fractures/physiopathology , Parathyroid Hormone-Related Protein/therapeutic use , Aged , Alendronate/pharmacology , Bone Density/drug effects , Humans , Parathyroid Hormone-Related Protein/pharmacology , Risk Factors , Risk Reduction Behavior
4.
J Bone Miner Res ; 26(9): 1989-96, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21721042

ABSTRACT

Much knowledge has accrued since the 2001 American College of Rheumatology (ACR) guidelines were published to assist clinicians in the prevention and treatment of glucocorticoid-induced osteoporosis (GIO). Therefore, the ACR undertook a comprehensive effort to review the literature and update the GIO guidelines [Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken). 2010;62:1515-1526]. Herein, we review the new guidelines for JBMR readers, highlighting the changes introduced by the 2010 publication. We discuss several patient scenarios for which the new treatment guidelines do not apply, or for which our committee interprets existing literature differently and suggests an alternative approach.


Subject(s)
Glucocorticoids/adverse effects , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Uncertainty , Diphosphonates/therapeutic use , Fractures, Bone/complications , Fractures, Bone/drug therapy , Hormone Replacement Therapy , Humans , Osteoporosis/chemically induced , Osteoporosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...