Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36837152

ABSTRACT

Teeth with different chemical compositions can show vastly different physical properties, so knowledge of elemental composition is required to use animal teeth as substitutes for human teeth in research. In vitro, energy dispersive X-ray spectroscopy (EDX), improved by calibration standards and Si3N4-window material, enables determining local elemental compositions of inorganic and organic compounds without sample destruction. Six human molars, bovine incisors, murine incisors, and murine molars were analyzed. EDX-field scans and line scans were analyzed for elements Ca, P, O, C, N, F, Na, Mg, Fe, Cl, and S. Furthermore, Ca/P- and Ca/N-Ratios were calculated. The presence of iron in murine incisor enamel was investigated using additional wavelength dispersive X-ray spectroscopy measurements (WDX) near the enamel surface. Bovine and human enamel and dentin revealed close similarities regarding elemental composition. The median (25-75% percentiles) of At%Ca was 21.1 (20.8-21.3) in human enamel, 21.0 (20.7-21.2) in bovine enamel, and in murine enamel, 18.3 (17.85-18.88) for molars and 18.35 (18.00-18.75) for incisors. In dentin, murine teeth revealed a higher At%Ca compared to human and bovine teeth. Significant differences between human and bovine teeth were found for nitrogen in dentin, with a median of 4.5 (3.3-5) At%N for human dentin and 2.7 (2.3-3.2) At%N for bovine dentin. The Ca/P-Ratio was the highest in human and bovine enamel, which did not differ significantly. Enamel from murine molars had a higher Ca/P-Ratio than murine incisors and the highest Ca/P-Ratio in dentin was observed for human teeth and murine molars (1.49). WDX revealed iron in the outer 10 µm of pre- and post-eruptive enamel of murine incisors. Pre- and post-eruptive enamel on murine incisors only differed significantly in At%Ca (p = 0.041) and At%P (p = 0.026) with both At% higher in the pre-eruptive enamel. Murine teeth differ significantly from human and bovine teeth in terms of the elemental composition of enamel and dentin.

2.
PLoS One ; 8(4): e61354, 2013.
Article in English | MEDLINE | ID: mdl-23626675

ABSTRACT

The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins.


Subject(s)
Archaeal Proteins/genetics , Gene Expression Regulation, Archaeal , Glucosyltransferases/genetics , Phosphoric Monoester Hydrolases/genetics , Thermoproteus/genetics , Archaeal Proteins/metabolism , Base Sequence , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Gene Transfer, Horizontal , Glucosyltransferases/metabolism , Hot Temperature , Molecular Sequence Data , Operon , Phosphoric Monoester Hydrolases/metabolism , Phylogeny , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermoproteus/chemistry , Thermoproteus/enzymology , Two-Hybrid System Techniques
3.
FEBS J ; 280(4): 1126-38, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23279921

ABSTRACT

Sulfolobus solfataricus P2 is a thermoacidophilic archaeon that metabolizes glucose and galactose via an unusual branched Entner-Doudoroff (ED) pathway, which is characterized by a non-phosphorylative (np) and a semi-phosphorylative (sp) branch. However, so far the physiological significance of the two pathway branches is unknown. In order to address these questions two key enzymes of the branched ED pathway, the class II glycerate kinase (GK) of the np-ED branch and the 2-keto-3-deoxygluconate kinase (KDGK) of the sp-ED branch in S. solfataricus, were investigated. GK was recombinantly purified and characterized with respect to its kinetic properties. Mg(2+) dependent Sso-GK (glycerate + ATP → 2-phosphoglycerate + ADP) showed unusual regulatory properties, i.e. substrate inhibition and cooperativity by D-glycerate and ATP, and a substrate-inhibition model was established fitting closely to the experimental data. Furthermore, deletion of the sp-ED key enzyme KDGK in S. solfataricus PBL2025 resulted in a similar growth phenotype on glucose as substrate compared with the wild-type. In contrast, the mutant showed strongly increased concentrations of np-ED intermediates whereas the hexose and pentose phosphates as well as trehalose were decreased. Together the results indicate (a) that the np-ED pathway is able to compensate for the missing sp-ED branch in glucose catabolism, (b) that in addition to its catabolic function the sp-ED pathway has an additional although not essential role in providing sugar phosphates for anabolism/gluconeogenesis and (c) that GK, with its unusual regulatory properties, seems to play a major role in controlling the flux between the glycolytic np-ED and the glycolytic/gluconeogenetic sp-ED pathway.


Subject(s)
Metabolic Networks and Pathways , Sulfolobus solfataricus/enzymology , Archaeal Proteins/biosynthesis , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Cloning, Molecular , Gene Deletion , Glyceric Acids/chemistry , Glycolysis , Hexokinase/chemistry , Kinetics , Metabolome , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/biosynthesis , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Phosphotransferases (Alcohol Group Acceptor)/genetics , Sulfolobus solfataricus/growth & development , Sulfolobus solfataricus/metabolism
4.
PLoS One ; 7(8): e43401, 2012.
Article in English | MEDLINE | ID: mdl-22952675

ABSTRACT

We describe the reconstruction of a genome-scale metabolic model of the crenarchaeon Sulfolobus solfataricus, a hyperthermoacidophilic microorganism. It grows in terrestrial volcanic hot springs with growth occurring at pH 2-4 (optimum 3.5) and a temperature of 75-80°C (optimum 80°C). The genome of Sulfolobus solfataricus P2 contains 2,992,245 bp on a single circular chromosome and encodes 2,977 proteins and a number of RNAs. The network comprises 718 metabolic and 58 transport/exchange reactions and 705 unique metabolites, based on the annotated genome and available biochemical data. Using the model in conjunction with constraint-based methods, we simulated the metabolic fluxes induced by different environmental and genetic conditions. The predictions were compared to experimental measurements and phenotypes of S. solfataricus. Furthermore, the performance of the network for 35 different carbon sources known for S. solfataricus from the literature was simulated. Comparing the growth on different carbon sources revealed that glycerol is the carbon source with the highest biomass flux per imported carbon atom (75% higher than glucose). Experimental data was also used to fit the model to phenotypic observations. In addition to the commonly known heterotrophic growth of S. solfataricus, the crenarchaeon is also able to grow autotrophically using the hydroxypropionate-hydroxybutyrate cycle for bicarbonate fixation. We integrated this pathway into our model and compared bicarbonate fixation with growth on glucose as sole carbon source. Finally, we tested the robustness of the metabolism with respect to gene deletions using the method of Minimization of Metabolic Adjustment (MOMA), which predicted that 18% of all possible single gene deletions would be lethal for the organism.


Subject(s)
Archaea/genetics , Genome, Archaeal , Genome , Sulfolobus solfataricus/genetics , Automation , Biomass , Carbon/chemistry , Gene Deletion , Glucose/chemistry , Glucose/metabolism , Glycerol/chemistry , Metabolic Networks and Pathways , Models, Biological , Models, Genetic , Phenol/chemistry , Phenotype , Polysaccharides/metabolism , RNA/metabolism , Sulfolobus solfataricus/metabolism , Temperature
5.
PLoS One ; 6(10): e24222, 2011.
Article in English | MEDLINE | ID: mdl-22003381

ABSTRACT

Here, we report on the complete genome sequence of the hyperthermophilic Crenarchaeum Thermoproteus tenax (strain Kra1, DSM 2078(T)) a type strain of the crenarchaeotal order Thermoproteales. Its circular 1.84-megabase genome harbors no extrachromosomal elements and 2,051 open reading frames are identified, covering 90.6% of the complete sequence, which represents a high coding density. Derived from the gene content, T. tenax is a representative member of the Crenarchaeota. The organism is strictly anaerobic and sulfur-dependent with optimal growth at 86°C and pH 5.6. One particular feature is the great metabolic versatility, which is not accompanied by a distinct increase of genome size or information density as compared to other Crenarchaeota. T. tenax is able to grow chemolithoautotrophically (CO2/H2) as well as chemoorganoheterotrophically in presence of various organic substrates. All pathways for synthesizing the 20 proteinogenic amino acids are present. In addition, two presumably complete gene sets for NADH:quinone oxidoreductase (complex I) were identified in the genome and there is evidence that either NADH or reduced ferredoxin might serve as electron donor. Beside the typical archaeal A0A1-ATP synthase, a membrane-bound pyrophosphatase is found, which might contribute to energy conservation. Surprisingly, all genes required for dissimilatory sulfate reduction are present, which is confirmed by growth experiments. Mentionable is furthermore, the presence of two proteins (ParA family ATPase, actin-like protein) that might be involved in cell division in Thermoproteales, where the ESCRT system is absent, and of genes involved in genetic competence (DprA, ComF) that is so far unique within Archaea.


Subject(s)
Genome, Archaeal/genetics , Thermoproteus/genetics , Thermoproteus/physiology , Amino Acids/biosynthesis , Chemoautotrophic Growth/genetics , DNA Replication/genetics , Energy Metabolism/genetics , Evolution, Molecular , Genomics , Phylogeny , Protein Biosynthesis/genetics , Protein Transport/genetics , Proton-Motive Force/genetics , Thermoproteus/metabolism , Transcription, Genetic/genetics
6.
Extremophiles ; 15(6): 711-2, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21912952

ABSTRACT

The thermoacidophiles Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 are considered key model organisms representing a major phylum of the Crenarchaeota. Because maintaining current, accurate genome information is indispensable for modern biology, we have updated gene function annotation using the arCOGs database, plus other available functional, structural and phylogenetic information. The goal of this initiative is continuous improvement of genome annotation with the support of the Sulfolobus research community.


Subject(s)
Genome, Archaeal , Sulfolobus acidocaldarius/physiology , Sulfolobus solfataricus/physiology , Open Reading Frames , Phylogeny , Sulfolobus acidocaldarius/classification , Sulfolobus acidocaldarius/genetics , Sulfolobus solfataricus/classification , Sulfolobus solfataricus/genetics , Transcription, Genetic
7.
Biochem Soc Trans ; 39(1): 77-81, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21265750

ABSTRACT

Within the SulfoSYS (Sulfolobus Systems Biology) project, the effect of temperature on a metabolic network is investigated at the systems level. Sulfolobus solfataricus utilizes an unusual branched ED (Entner-Doudoroff) pathway for sugar degradation that is promiscuous for glucose and galactose. In the course of metabolic pathway reconstruction, a glucose dehydrogenase isoenzyme (GDH-2, SSO3204) was identified. GDH-2 exhibits high similarity to the previously characterized GDH-1 (SSO3003, 61% amino acid identity), but possesses different enzymatic properties, particularly regarding substrate specificity and catalytic efficiency. In contrast with GDH-1, which exhibits broad substrate specificity for C5 and C6 sugars, GDH-2 is absolutely specific for glucose. The comparison of kinetic parameters suggests that GDH-2 might represent the major player in glucose catabolism via the branched ED pathway, whereas GDH-1 might have a dominant role in galactose degradation via the same pathway as well as in different sugar-degradation pathways.


Subject(s)
Archaeal Proteins/metabolism , Carbohydrate Metabolism , Glucose 1-Dehydrogenase/metabolism , Isoenzymes/metabolism , Sulfolobus solfataricus/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Binding Sites , Galactose/chemistry , Galactose/metabolism , Glucose/chemistry , Glucose/metabolism , Glucose 1-Dehydrogenase/chemistry , Glucose 1-Dehydrogenase/genetics , Isoenzymes/chemistry , Isoenzymes/genetics , Models, Molecular , Molecular Sequence Data , Protein Conformation , Substrate Specificity , Sulfolobus solfataricus/genetics
8.
Extremophiles ; 14(1): 119-42, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19802714

ABSTRACT

Within the archaea, the thermoacidophilic crenarchaeote Sulfolobus solfataricus has become an important model organism for physiology and biochemistry, comparative and functional genomics, as well as, more recently also for systems biology approaches. Within the Sulfolobus Systems Biology ("SulfoSYS")-project the effect of changing growth temperatures on a metabolic network is investigated at the systems level by integrating genomic, transcriptomic, proteomic, metabolomic and enzymatic information for production of a silicon cell-model. The network under investigation is the central carbohydrate metabolism. The generation of high-quality quantitative data, which is critical for the investigation of biological systems and the successful integration of the different datasets, derived for example from high-throughput approaches (e.g., transcriptome or proteome analyses), requires the application and compliance of uniform standard protocols, e.g., for growth and handling of the organism as well as the "-omics" approaches. Here, we report on the establishment and implementation of standard operating procedures for the different wet-lab and in silico techniques that are applied within the SulfoSYS-project and that we believe can be useful for future projects on Sulfolobus or (hyper)thermophiles in general. Beside established techniques, it includes new methodologies like strain surveillance, the improved identification of membrane proteins and the application of crenarchaeal metabolomics.


Subject(s)
Genomics/methods , Genomics/standards , Sulfolobus solfataricus/genetics
9.
Biochem Soc Trans ; 37(Pt 1): 58-64, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19143602

ABSTRACT

SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bacteria or Eukarya, e.g. the unusual branched ED (Entner-Doudoroff) pathway, which is utilized for glucose degradation in S. solfataricus. This archaeal model organism of choice is a thermoacidophilic crenarchaeon that optimally grows at 80 degrees C (60-92 degrees C) and pH 2-4. In general, life at high temperature requires very efficient adaptation to temperature changes, which is most difficult to deal with for organisms, and it is unclear how biological networks can withstand and respond to such changes. This integrative project combines genomic, transcriptomic, proteomic and metabolomic, as well as kinetic and biochemical information. The final goal of SulfoSYS is the construction of a silicon cell model for this part of the living cell that will enable computation of the CCM network. In the present paper, we report on one of the first archaeal systems biology projects.


Subject(s)
Carbohydrate Metabolism , Models, Biological , Sulfolobus solfataricus/metabolism , Systems Biology , Temperature , Gene Regulatory Networks
10.
Arch Microbiol ; 190(3): 231-45, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18491075

ABSTRACT

Although the complexity and modifications of the archaeal central carbohydrate metabolism (CCM) are well established, the knowledge about its regulation is rather limited. The facultatively heterotrophic, hyperthermophilic crenarchaeote Thermoproteus tenax utilizes a modified version of the reversible Embden-Meyerhof-Parnas (EMP) and the catabolic, branched Entner-Doudoroff (ED) pathway for glucose metabolism. Glucose is completely oxidized to carbon dioxide via the oxidative tricarboxylic acid (TCA) cycle, which is supposedly used in the reductive direction for carbon dioxide fixation under autotrophic growth conditions. Elemental sulfur is used as final electron acceptor. The CCM of T. tenax has been well studied on protein level as well as on gene level by performing a focused transcriptional analysis (CCM DNA microarray). In contrast to the classical pathways found in Bacteria and Eucarya allosteric regulation seems to play a minor role, therefore emphasizing the important role of regulation on transcript level in T. tenax. Whereas the EMP pathway and the TCA cycle show a highly coordinated regulation on gene level, the catabolic, branched ED pathway reveals no strong regulation. The CCM pathways in T. tenax and the current understanding of their regulation are presented.


Subject(s)
Carbohydrate Metabolism , Citric Acid Cycle , Glycolysis , Thermoproteus/enzymology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Autotrophic Processes , Carbon Dioxide/metabolism , Gene Expression Regulation, Archaeal , Glucose/metabolism , Heterotrophic Processes , Oligonucleotide Array Sequence Analysis , Sulfur/metabolism , Thermoproteus/genetics
11.
Arch Microbiol ; 190(3): 355-69, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18483808

ABSTRACT

In the genome of the hyperthermophilic archaeon Thermoproteus tenax a gene (treS/P) encoding a protein with similarity to annotated trehalose phosphorylase (TreP), trehalose synthase (TreS) and more recently characterized trehalose glycosyltransferring synthase (TreT) was identified. The treS/P gene as well as an upstream located ORF of unknown function (orfY) were cloned, heterologously expressed in E. coli and purified. The enzymatic characterization of the putative TreS/P revealed TreT activity. However, contrary to the previously characterized reversible TreT from Thermococcus litoralis and Pyrococcus horikoshii, the T. tenax enzyme is unidirectional and catalyzes only the formation of trehalose from UDP (ADP)-glucose and glucose. The T. tenax enzyme differs from the reversible TreT of T. litoralis by its preference for UDP-glucose as co-substrate. Phylogenetic and comparative gene context analyses reveal a conserved organization of the unidirectional TreT and OrfY gene cluster that is present in many Archaea and a few Bacteria. In contrast, the reversible TreT pathway seems to be restricted to only a few archaeal (e.g. Thermococcales) and bacterial (Thermotogales) members. Here we present a new pathway exclusively involved in trehalose synthesis--the unidirectional TreT pathway--and discuss its physiological role as well as its phylogenetic distribution.


Subject(s)
Archaeal Proteins/metabolism , Glucosyltransferases/metabolism , Thermoproteus/enzymology , Trehalose/metabolism , Amino Acid Sequence , Archaeal Proteins/genetics , Chromatography, Thin Layer , Cloning, Organism , Genes, Archaeal , Glucose/metabolism , Glucosyltransferases/genetics , Molecular Sequence Data , Molecular Weight , Photometry , Phylogeny , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Substrate Specificity , Thermoproteus/genetics
12.
J Bacteriol ; 190(6): 2231-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18178743

ABSTRACT

In order to unravel the role of regulation on transcript level in central carbohydrate metabolism (CCM) of Thermoproteus tenax, a focused DNA microarray was constructed by using 85 open reading frames involved in CCM. A transcriptional analysis comparing heterotrophic growth on glucose versus autotrophic growth on CO2-H2 was performed.


Subject(s)
Carbohydrate Metabolism , Oligonucleotide Array Sequence Analysis/methods , Thermoproteus/genetics , Thermoproteus/metabolism , Gene Expression Regulation, Archaeal/drug effects , Gluconeogenesis , Glucose/metabolism , Glucose/pharmacology , Glycolysis , Hot Temperature , Open Reading Frames/genetics , Thermoproteus/growth & development , Transcription, Genetic/drug effects
13.
J Bacteriol ; 186(7): 2179-94, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15028704

ABSTRACT

The hyperthermophilic, facultatively heterotrophic crenarchaeum Thermoproteus tenax was analyzed using a low-coverage shotgun-sequencing approach. A total of 1.81 Mbp (representing 98.5% of the total genome), with an average gap size of 100 bp and 5.3-fold coverage, are reported, giving insights into the genome of T. tenax. Genome analysis and biochemical studies enabled us to reconstruct its central carbohydrate metabolism. T. tenax uses a variant of the reversible Embden-Meyerhof-Parnas (EMP) pathway and two different variants of the Entner-Doudoroff (ED) pathway (a nonphosphorylative variant and a semiphosphorylative variant) for carbohydrate catabolism. For the EMP pathway some new, unexpected enzymes were identified. The semiphosphorylative ED pathway, hitherto supposed to be active only in halophiles, is found in T. tenax. No evidence for a functional pentose phosphate pathway, which is essential for the generation of pentoses and NADPH for anabolic purposes in bacteria and eucarya, is found in T. tenax. Most genes involved in the reversible citric acid cycle were identified, suggesting the presence of a functional oxidative cycle under heterotrophic growth conditions and a reductive cycle for CO2 fixation under autotrophic growth conditions. Almost all genes necessary for glycogen and trehalose metabolism were identified in the T. tenax genome.


Subject(s)
Archaeal Proteins/genetics , Carbohydrate Metabolism , Genome, Archaeal , Thermoproteus/enzymology , Archaeal Proteins/metabolism , Base Sequence , Citric Acid Cycle , Glucose/metabolism , Glycogen/metabolism , Glycolysis , Molecular Sequence Data , Sequence Analysis, DNA , Thermoproteus/genetics , Trehalose/metabolism
14.
J Biol Chem ; 278(21): 18744-53, 2003 May 23.
Article in English | MEDLINE | ID: mdl-12626506

ABSTRACT

The phosphorylation of glucose by different sugar kinases plays an essential role in Archaea because of the absence of a phosphoenolpyruvate-dependent transferase system characteristic for Bacteria. In the genome of the hyperthermophilic Archaeon Thermoproteus tenax a gene was identified with sequence similarity to glucokinases of the so-called ROK family (repressor protein, open reading frame, sugar kinase). The T. tenax enzyme, like the recently described ATP-dependent "glucokinase" from Aeropyrum pernix, shows the typical broad substrate specificity of hexokinases catalyzing not only phosphorylation of glucose but also of other hexoses such as fructose, mannose, or 2-deoxyglucose, and thus both enzymes represent true hexokinases. The T. tenax hexokinase shows strikingly low if at all any regulatory properties and thus fulfills no important control function at the beginning of the variant of the Embden-Meyerhof-Parnas pathway in T. tenax. Transcript analyses reveal that the hxk gene of T. tenax is cotranscribed with an upstream located orfX, which codes for an 11-kDa protein of unknown function. Growth-dependent studies and promoter analyses suggest that post-transcriptional RNA processing might be involved in the generation of the monocistronic hxk message, which is observed only under heterotrophic growth conditions. Data base searches revealed T. tenax hexokinase homologs in some archaeal, few eukaryal, and many bacterial genomes. Phylogenetic analyses confirm that the archaeal hexokinase is a member of the so-called ROK family, which, however, should be referred to as ROK group because it represents a group within the bacterial glucokinase fructokinase subfamily II of the hexokinase family. Thus, archaeal hexokinases represent a second major group of glucose-phosphorylating enzymes in Archaea beside the recently described archaeal ADP-dependent glucokinases, which were recognized as members of the ribokinase family. The distribution of the two types of sugar kinases, differing in their cosubstrate as well as substrate specificity, within Archaea is discussed on the basis of physiological constraints of the respective organisms.


Subject(s)
Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Glucokinase/metabolism , Hexokinase/metabolism , Thermoproteaceae/enzymology , Amino Acid Sequence , Base Sequence , Blotting, Northern , Cations, Divalent , Fructose/metabolism , Genes, Bacterial , Glucokinase/chemistry , Glucokinase/genetics , Glucose/metabolism , Hexokinase/chemistry , Hexokinase/genetics , Magnesium/pharmacology , Manganese/pharmacology , Mannose/metabolism , Molecular Sequence Data , Molecular Weight , Phosphorylation , Phylogeny , Promoter Regions, Genetic , RNA, Messenger/analysis , Recombinant Proteins/metabolism , Substrate Specificity , Thermoproteaceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...