Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Interpers Violence ; 38(3-4): 2654-2682, 2023 02.
Article in English | MEDLINE | ID: mdl-35727942

ABSTRACT

Domestic violence has long-term negative consequences on children. In this study, men with a history of partner aggression and a control group of non-offenders were embodied in a child's body from a first-person perspective in virtual reality (VR). From this perspective, participants witnessed a scene of domestic violence where a male avatar assaulted a female avatar. We evaluated the impact of the experience on emotion recognition skills and heart rate deceleration responses. We found that the experience mainly impacted the recognition of angry facial expressions. The results also indicate that males with a history of partner aggression had larger physiological responses during an explicit violent event (when the virtual abuser threw a telephone) compared with controls, while their physiological reactions were less pronounced when the virtual abuser invaded the victim's personal space. We show that embodiment from a child's perspective during a conflict situation in VR impacts emotion recognition, physiological reactions, and attitudes towards violence. We provide initial evidence of the potential of VR in the rehabilitation and neuropsychological assessment of males with a history of domestic violence, especially in relation to children.


Subject(s)
Domestic Violence , Intimate Partner Violence , Virtual Reality , Humans , Male , Female , Child , Domestic Violence/psychology , Aggression/psychology , Emotions , Anger , Intimate Partner Violence/psychology
2.
Opt Express ; 30(14): 24186-24206, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36236979

ABSTRACT

Despite the popularity and ubiquity of the tilted-pulse-front technique for single-cycle terahertz (THz) pulse generation, there is a deficit of experimental studies comprehensively mapping out the dependence of the performance on key setup parameters. The most critical parameters include the pulse-front tilt, the effective length of the pump pulse propagation within the crystal as well as effective length over which the THz beam interacts with the pump before it spatially walks off. Therefore, we investigate the impact of these parameters on the conversion efficiency and the shape of the THz beam via systematically scanning the 5D parameter space spanned by pump fluence, pulse-front-tilt, crystal-position (2D), and the pump size experimentally. We verify predictions so far only made by theory regarding the optimum interaction lengths and map out the impact of cascading on the THz radiation generation process. Furthermore, distortions imposed on the spatial THz beam profile for larger than optimum interaction lengths are observed. Finally, we identify the most sensitive parameters and, based on our findings, propose a robust optimization strategy for tilted-pulse-front THz setups. These findings are relevant for all THz strong-field applications in high demand of robust high-energy table-top single-cycle THz sources such as THz plasmonics, high-harmonic generation in solids as well as novel particle accelerators and beam manipulators.

3.
Front Psychol ; 11: 820, 2020.
Article in English | MEDLINE | ID: mdl-32457681

ABSTRACT

Immersive virtual reality is widely used for research and clinical purposes. Here we explored the impact of an immersive virtual scene of intimate partner violence experienced from the victim's perspective (first person), as opposed to witnessing it as an observer (third person). We are ultimately interested in the potential of this approach to rehabilitate batterers and in understanding the mechanisms underlying this process. For this, non-offender men experienced the scene either from the perspective of the victim's virtual body (a female avatar), which moved synchronously with the participants' real movements, or from the perspective of an observer, while we recorded their behavior and physiological responses. We also evaluated through questionnaires, interviews and implicit association tests their subjective impressions and potential pre/post changes in implicit gender bias following the experience. We found that in all participants, regardless of perspective, the magnitude of the physiological reactions to virtual threatening stimuli was related to how vulnerable they felt for being a woman, the sensation that they could be assaulted, how useful the scene could be for batterer rehabilitation, and how different it would have been to experience the scenario on TV. Furthermore, we found that their level of identification with the female avatar correlated with the decrease in prejudice against women. Although the first-person perspective (1PP) facilitated taking the scene personally, generated a sensation of fear, helplessness, and vulnerability, and tended to induce greater behavioral and physiological reactions, we show that the potential for batterer rehabilitation originates from presence and identification with the victim, which in turn is more easily, but not exclusively, achieved through 1PP. This study is relevant for the development of advanced virtual reality tools for clinical purposes.

4.
Nat Photonics ; 12(6): 336-342, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29881446

ABSTRACT

Acceleration and manipulation of electron bunches underlie most electron and X-ray devices used for ultrafast imaging and spectroscopy. New terahertz-driven concepts offer orders-of-magnitude improvements in field strengths, field gradients, laser synchronization and compactness relative to conventional radio-frequency devices, enabling shorter electron bunches and higher resolution with less infrastructure while maintaining high charge capacities (pC), repetition rates (kHz) and stability. We present a segmented terahertz electron accelerator and manipulator (STEAM) capable of performing multiple high-field operations on the 6D-phase-space of ultrashort electron bunches. With this single device, powered by few-micro-Joule, single-cycle, 0.3 THz pulses, we demonstrate record THz-acceleration of >30 keV, streaking with <10 fs resolution, focusing with >2 kT/m strength, compression to ~100 fs as well as real-time switching between these modes of operation. The STEAM device demonstrates the feasibility of THz-based electron accelerators, manipulators and diagnostic tools enabling science beyond current resolution frontiers with transformative impact.

5.
Opt Lett ; 43(8): 1686-1689, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29652340

ABSTRACT

We demonstrate a compact and robust Yb-fiber master-oscillator power-amplifier system operating at 1018 nm with 2.5-nm bandwidth and 1-ns stretched pulse duration. It produces 87-W average power and 4.9-µJ pulse energy, constituting a powerful seed source for cryogenically cooled ultrafast Yb: yttrium lithium fluoride (Yb:YLF) amplifiers.

6.
Opt Express ; 24(18): 21059-69, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27607709

ABSTRACT

We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources.

7.
Sci Rep ; 5: 14899, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26486697

ABSTRACT

Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativistic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns. A single-cycle THz electron gun provides a unique opportunity to not only achieve GV/m surface electric fields but also with relatively low THz pulse energies, since a single-cycle transform-limited waveform is the most efficient way to achieve intense electric fields. Here, electron bunches of 50 fC from a flat copper photocathode are accelerated from rest to tens of eV by a microjoule THz pulse with peak electric field of 72 MV/m at 1 kHz repetition rate. We show that scaling to the readily-available GV/m THz field regime would translate to monoenergetic electron beams of ~100 keV.

8.
Opt Lett ; 40(11): 2610-3, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26030570

ABSTRACT

A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth.

9.
Opt Express ; 23(8): 10132-44, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969056

ABSTRACT

We report on a diode-pumped, hybrid Yb-doped chirped-pulse amplification (CPA) laser system with a compact pulse stretcher and compressor, consisting of Yb-doped fiber preamplifiers, a room-temperature Yb:KYW regenerative amplifier (RGA), and cryogenic Yb:YAG multi-pass amplifiers. The RGA provides a relatively broad amplification bandwidth and thereby a long pulse duration to mitigate B-integral in the CPA chain. The ~1030-nm laser pulses are amplified up to 70 mJ at 1-kHz repetition rate, currently limited by available optics apertures, and then compressed to ~6 ps with high efficiency. The near-diffraction-limited beam focusing quality is demonstrated with M(x)(2) = 1.1 and M(y)(2) = 1.2. The shot-to-shot energy fluctuation is as low as ~1% (rms), and the long-term energy drift and beam pointing stability for over 8 hours measurement are ~3.5% and <6 µrad (rms), respectively. To the best of our knowledge, this hybrid laser system produces the most energetic picosecond pulses at kHz repetition rates among rod-type laser amplifiers. With an optically synchronized Ti:sapphire seed laser, it provides a versatile platform optimized for pumping optical parametric chirped-pulse amplification systems as well as driving inverse Compton scattered X-rays.

10.
Opt Lett ; 40(4): 665-8, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25680176

ABSTRACT

We demonstrate a 0.56-GW, 1-kHz, 4.2-ps, 2.74-mJ deep-ultraviolet (DUV) laser at ∼257.7 nm with a beam propagation factor (M2) of ∼2.54 from a frequency-quadrupled cryogenic multi-stage Yb-doped chirped-pulse amplifier. The frequency quadrupling is achieved using LiB3O5 and ß-BaB2O4 crystals for near-infrared (NIR)-to-green and green-to-DUV conversion, respectively. An overall NIR-to-DUV efficiency of ∼10% has been achieved, which is currently limited by the thermal-induced phase mismatching and the DUV-induced degradation of transmittance. To the best of our knowledge, this is the highest peak-power picosecond DUV source from a diode-pumped solid-state laser operating at kHz repetition rates.


Subject(s)
Lasers , Ultraviolet Rays , Amplifiers, Electronic , Optical Phenomena
11.
Opt Lett ; 39(11): 3145-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24875998

ABSTRACT

We report on a multi-mJ 2.1 µm optical parametric chirped-pulse amplification (OPCPA) system operating at 1 kHz repetition rate, pumped by a picosecond cryogenic Yb:YAG laser, and the demonstration of soft x-ray high-harmonic generation (HHG) with a flux of ∼2×10(8) photon/s/1% bandwidth at 160 eV in Ar. The 1 kHz cryogenic Yb:YAG pump laser amplifies pulses up to 56 mJ and delivers compressed 42 mJ, 17 ps pulses to the 2.1 µm OPCPA system. In the three-stage OPCPA chain, we have obtained up to 2.6 mJ of output energies at 2.1 µm and pulses compressed to 40 fs with good beam quality. Finally, we show cut-off extension of HHG driven by this 2.1 µm source in Ar and N2 gas cells to 190 eV with high photon flux. Our 3D propagation simulation confirms the generation of soft x-ray attosecond pulses from the experiment with Ar.


Subject(s)
Amplifiers, Electronic , Lasers, Solid-State , Optical Devices , Equipment Design , Optical Phenomena , Photons , X-Rays
12.
Opt Lett ; 38(5): 796-8, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455302

ABSTRACT

We demonstrate highly efficient terahertz (THz) generation by optical rectification (OR) of near-optimum pump pulses centered at 1.03 µm in cryogenically cooled lithium niobate. Using a close to optimal pulse duration of 680 fs and a pump energy of 1.2 mJ, we report conversion efficiencies above 3.8±0.4%, which is more than an order of magnitude higher than previously reported. The results confirm the advantage of using cryogenic cooling of the lithium niobate crystal that significantly reduces the THz absorption, enabling the scaling of THz pulse energies to the millijoule level via OR.

13.
Opt Lett ; 37(13): 2700-2, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22743500

ABSTRACT

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output power with excellent beam quality (M(2)=1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency in a regenerative amplifier. The second-stage, multipass amplifier increases the pulse energy to 10.6 mJ, resulting in a spectral width of 2.2 nm. The pulses are compressed to 865 fs in duration, which is 1.26 times the transform limit.

14.
Opt Lett ; 35(11): 1854-6, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20517440

ABSTRACT

We demonstrate a cryogenically cooled Yb:LiYF(4) (Yb:YLF) laser with 224W linearly polarized output power (pump-power limited) and a slope efficiency of 68%. The beam quality is characterized by an M(2) approximately 1.1 at 60W output and M(2) approximately 2.6 at 180W output. This level of average laser power is approximately 2 orders of magnitude higher than demonstrated previously in cryogenic Yb:YLF. Yb:YLF is attractive for femtosecond pulse generation because of its wide gain bandwidth, and this demonstration shows the potential for high-average-power subpicosecond pulse lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...