Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Arq Bras Cardiol ; 121(2): e20230405, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38597541

ABSTRACT

BACKGROUND: Systemic arterial hypertension is a risk factor for cardiac, renal, and metabolic dysfunction. The search for new strategies to prevent and treat cardiovascular diseases led to the synthesis of new N-acylhydrazones to produce antihypertensive effect. Adenosine receptors are an alternative target to reduce blood pressure because of their vasodilatory action and antioxidant properties, which may reduce oxidative stress characteristic of systemic arterial hypertension. OBJECTIVE: To evaluate the antihypertensive profile of novel selenium-containing compounds designed to improve their interaction with adenosine receptors. METHODS: Vascular reactivity was evaluated by recording the isometric tension of pre-contracted thoracic aorta of male Wistar rats after exposure to increasing concentrations of each derivative (0.1 to 100 µM). To investigate the antihypertensive effect in spontaneously hypertensive rats, systolic, diastolic, and mean arterial pressure and heart rate were determined after intravenous administration of 10 and 30 µmol/kg of the selected compound LASSBio-2062. RESULTS: Compounds named LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092, and LASSBio-2093 promoted vasodilation with mean effective concentrations of 15.5 ± 6.5; 14.6 ± 2.9; 18.7 ± 9.6; 6.7 ± 4.1; > 100; 6.0 ± 3.6; 37.8 ± 11.8; and 15.9 ± 5.7 µM, respectively. LASSBio-2062 (30 µmol/kg) reduced mean arterial pressure in spontaneously hypertensive rats from 124.6 ± 8.6 to 72.0 ± 12.3 mmHg (p < 0.05). Activation of adenosine receptor subtype A3 and potassium channels seem to be involved in the antihypertensive effect of LASSBio-2062. CONCLUSIONS: The new agonist of adenosine receptor and activator of potassium channels is a potential therapeutic agent to treat systemic arterial hypertension.


FUNDAMENTO: A hipertensão arterial sistêmica é um fator de risco para disfunções cardíacas, renais e metabólicas. A busca por novas estratégias para prevenir e tratar doenças cardiovasculares levou à síntese de novas N-acilidrazonas para produzir efeito anti-hipertensivo. Os receptores de adenosina são um alvo alternativo para reduzir a pressão arterial devido à sua ação vasodilatadora e propriedades antioxidantes, que podem reduzir o estresse oxidativo característico da hipertensão arterial sistêmica. OBJETIVO: Avaliar o perfil anti-hipertensivo de novos compostos contendo selênio desenvolvidos para melhorar sua interação com os receptores de adenosina. MÉTODOS: Foi avaliada a reatividade vascular, registrando-se a tensão isométrica da aorta torácica pré-contraída de ratos Wistar machos após exposição a concentrações crescentes de cada derivado (0,1 a 100 µM). Para investigar o efeito anti-hipertensivo em ratos espontaneamente hipertensos, foram determinadas a pressão arterial sistólica, pressão arterial diastólica, pressão arterial média e a frequência cardíaca após administração intravenosa de 10 e 30 µmol/kg do composto selecionado LASSBio-2062. RESULTADOS: Os compostos denominados LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092 e LASSBio-2093 promoveram vasodilatação com concentrações efetivas médias de 15,5 ± 6,5; 14,6 ± 2,9; 18,7 ± 9,6; 6,7 ± 4,1; > 100; 6,0 ± 3,6; 37,8 ± 11,8; e 15,9 ± 5,7 µM, respectivamente. O LASSBio-2062 (30 µmol/kg) reduziu a pressão arterial média em ratos espontaneamente hipertensos de 124,6 ± 8,6 para 72,0 ± 12,3 mmHg (p < 0,05). A ativação do receptor de adenosina subtipo A3 e dos canais de potássio parece estar envolvida no efeito anti-hipertensivo do LASSBio-2062. CONCLUSÕES: O novo agonista do receptor de adenosina e ativador dos canais de potássio é um potencial agente terapêutico para o tratamento da hipertensão arterial sistêmica.


Subject(s)
Antihypertensive Agents , Hypertension , Rats , Animals , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Rats, Inbred SHR , Rats, Wistar , Hypertension/drug therapy , Blood Pressure , Potassium Channels
2.
Arq. bras. cardiol ; 121(2): e20230405, 2024. tab, graf
Article in Portuguese | LILACS-Express | LILACS | ID: biblio-1557015

ABSTRACT

Resumo Fundamento A hipertensão arterial sistêmica é um fator de risco para disfunções cardíacas, renais e metabólicas. A busca por novas estratégias para prevenir e tratar doenças cardiovasculares levou à síntese de novas N-acilidrazonas para produzir efeito anti-hipertensivo. Os receptores de adenosina são um alvo alternativo para reduzir a pressão arterial devido à sua ação vasodilatadora e propriedades antioxidantes, que podem reduzir o estresse oxidativo característico da hipertensão arterial sistêmica. Objetivo Avaliar o perfil anti-hipertensivo de novos compostos contendo selênio desenvolvidos para melhorar sua interação com os receptores de adenosina. Métodos Foi avaliada a reatividade vascular, registrando-se a tensão isométrica da aorta torácica pré-contraída de ratos Wistar machos após exposição a concentrações crescentes de cada derivado (0,1 a 100 μM). Para investigar o efeito anti-hipertensivo em ratos espontaneamente hipertensos, foram determinadas a pressão arterial sistólica, pressão arterial diastólica, pressão arterial média e a frequência cardíaca após administração intravenosa de 10 e 30 μmol/kg do composto selecionado LASSBio-2062. Resultados Os compostos denominados LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092 e LASSBio-2093 promoveram vasodilatação com concentrações efetivas médias de 15,5 ± 6,5; 14,6 ± 2,9; 18,7 ± 9,6; 6,7 ± 4,1; > 100; 6,0 ± 3,6; 37,8 ± 11,8; e 15,9 ± 5,7 μM, respectivamente. O LASSBio-2062 (30 μmol/kg) reduziu a pressão arterial média em ratos espontaneamente hipertensos de 124,6 ± 8,6 para 72,0 ± 12,3 mmHg (p < 0,05). A ativação do receptor de adenosina subtipo A3 e dos canais de potássio parece estar envolvida no efeito anti-hipertensivo do LASSBio-2062. Conclusões O novo agonista do receptor de adenosina e ativador dos canais de potássio é um potencial agente terapêutico para o tratamento da hipertensão arterial sistêmica.


Abstract Background Systemic arterial hypertension is a risk factor for cardiac, renal, and metabolic dysfunction. The search for new strategies to prevent and treat cardiovascular diseases led to the synthesis of new N-acylhydrazones to produce antihypertensive effect. Adenosine receptors are an alternative target to reduce blood pressure because of their vasodilatory action and antioxidant properties, which may reduce oxidative stress characteristic of systemic arterial hypertension. Objective To evaluate the antihypertensive profile of novel selenium-containing compounds designed to improve their interaction with adenosine receptors. Methods Vascular reactivity was evaluated by recording the isometric tension of pre-contracted thoracic aorta of male Wistar rats after exposure to increasing concentrations of each derivative (0.1 to 100 μM). To investigate the antihypertensive effect in spontaneously hypertensive rats, systolic, diastolic, and mean arterial pressure and heart rate were determined after intravenous administration of 10 and 30 μmol/kg of the selected compound LASSBio-2062. Results Compounds named LASSBio-2062, LASSBio-2063, LASSBio-2075, LASSBio-2076, LASSBio-2084, LASSBio-430, LASSBio-2092, and LASSBio-2093 promoted vasodilation with mean effective concentrations of 15.5 ± 6.5; 14.6 ± 2.9; 18.7 ± 9.6; 6.7 ± 4.1; > 100; 6.0 ± 3.6; 37.8 ± 11.8; and 15.9 ± 5.7 μM, respectively. LASSBio-2062 (30 μmol/kg) reduced mean arterial pressure in spontaneously hypertensive rats from 124.6 ± 8.6 to 72.0 ± 12.3 mmHg (p < 0.05). Activation of adenosine receptor subtype A3 and potassium channels seem to be involved in the antihypertensive effect of LASSBio-2062. Conclusions The new agonist of adenosine receptor and activator of potassium channels is a potential therapeutic agent to treat systemic arterial hypertension.

3.
Biomedicines ; 11(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38137470

ABSTRACT

Chronic pain presents a major challenge in contemporary medicine, given the limited effectiveness and numerous adverse effects linked to available treatments. Recognizing the potential of the cholinergic pathway as a therapeutic target, the present work evaluates the antinociceptive activity of a combination of Cris-104, a novel α4ß2* receptor agonist, and donepezil, a central anticholinesterase agent. Isobolographic analysis revealed that equimolar combination was approximately 10 times more potent than theoretically calculated equipotent additive dose. Administration of Cris-104 and donepezil combination (3 µmol/kg) successfully reversed hyperalgesia and mechanical allodynia observed in rats subjected to spinal nerve ligation (SNL). The combination also modulated neuroinflammation by reducing astrocyte activation, evident in the decreased expression of glial fibrillary acidic protein (GFAP) in the spinal cord. The observed synergism in combining a nicotinic receptor agonist with an anticholinesterase agent underscores its potential for treating chronic pain. This alternative therapeutic distinct advantage, including dose reduction and high selectivity for the receptor, contribute to a more favorable profile with minimized adverse effects.

4.
Cureus ; 15(9): e45728, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37868534

ABSTRACT

Vulvar rejuvenation, which includes both functional and aesthetic aspects, has received a lot of attention in recent years. Despite the fact that surgical interventions have proven to be effective, the development of minimally invasive techniques for restoring volume and tissue function remains a top priority. This case study describes a novel method for vulvar volumization and collagen stimulation of the labia majora using a hyaluronic acid filling technique. The procedure begins with a meticulous assessment of each patient's anatomical characteristics and specific concerns, followed by hyaluronic acid retroinjections using a microcannula. The current article describes the use of this technique on a single patient and emphasizes its potential benefits in addressing various vulvar concerns, with a focus on minimal downtime and high patient satisfaction. The case report adds to the ongoing search for optimal vulvar rejuvenation strategies by providing valuable insights into the efficacy and utility of this novel approach.

5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499467

ABSTRACT

Aging is an important risk factor for the development of heart failure (HF) and half of patients with HF have preserved ejection fraction (HFpEF) which is more common in elderly women. In general, sex differences that lead to discrepancies in risk factors and to the development of cardiovascular disease (CVD) have been attributed to the reduced level of circulating estrogen during menopause. Estrogen receptors adaptively modulate fibrotic, apoptotic, inflammatory processes and calcium homeostasis, factors that are directly involved in the HFpEF. Therefore, during menopause, estrogen depletion reduces the cardioprotection. Preclinical menopause models demonstrated that several signaling pathways and organ systems are closely involved in the development of HFpEF, including dysregulation of the renin-angiotensin system (RAS), chronic inflammatory process and alteration in the sympathetic nervous system. Thus, this review explores thealterations observed in the condition of HFpEF induced by menopause and the therapeutic targets with potential to interfere with the disease progress.


Subject(s)
Heart Failure , Female , Humans , Male , Aged , Heart Failure/metabolism , Stroke Volume/physiology , Menopause , Renin-Angiotensin System , Estrogens/therapeutic use
6.
Biomedicines ; 10(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36552014

ABSTRACT

Cardiovascular autonomic neuropathy (CAN) is a severe complication of the advance stage of diabetes. More than 50% of diabetic patients diagnosed with peripheral neuropathy will have CAN, with clinical manifestations including tachycardia, severe orthostatic hypotension, syncope, and physical exercise intolerance. Since the prevalence of diabetes is increasing, a concomitant increase in CAN is expected and will reduce quality of life and increase mortality. Autonomic dysfunction is associated with reduced baroreflex sensitivity and impairment of sympathetic and parasympathetic modulation. Various autonomic function tests are used to diagnose CAN, a condition without adequate treatment. It is important to consider the control of glucose level and blood pressure as key factors for preventing CAN progression. However, altered biomarkers of inflammatory and endothelial function, increased purinergic receptor expression, and exacerbated oxidative stress lead to possible targets for the treatment of CAN. The present review describes the molecular alterations seen in CAN, diagnosis, and possible alternative treatments.

7.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35890198

ABSTRACT

Mitogen-activated protein kinase (MAPK) signaling is strongly implicated in cardiovascular remodeling in pulmonary hypertension (PH) and right ventricle (RV) failure. The effects of a newly designed p38 inhibitor, LASSBio-1824, were investigated in experimentally induced PH. Male Wistar rats were exposed to hypoxia and SU5416 (SuHx), and normoxic rats were used as controls. Oral treatment was performed for 14 days with either vehicle or LASSBio-1824 (50 mg/kg). Pulmonary vascular resistance and RV structure and function were assessed by echocardiography and catheterization. Histological, immunohistochemical and Western blot analysis of lung and RV were performed to investigate cardiovascular remodeling and inflammation. Treatment with LASSBio-1824 normalized vascular resistance by attenuating vessel muscularization and endothelial dysfunction. In the heart, treatment decreased RV systolic pressure, hypertrophy and collagen content, improving cardiac function. Protein content of TNF-α, iNOS, phosphorylated p38 and caspase-3 were reduced both in lung vessels and RV tissues after treatment and a reduced activation of transcription factor c-fos was found in cardiomyocytes of treated SuHx rats. Therefore, LASSBio-1824 represents a potential candidate for remodeling-targeted treatment of PH.

10.
Cells ; 11(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053356

ABSTRACT

The incidence and prevalence of diabetes mellitus (DM) are increasing worldwide, and the resulting cardiac complications are the leading cause of death. Among these complications is diabetes-induced cardiomyopathy (DCM), which is the consequence of a pro-inflammatory condition, oxidative stress and fibrosis caused by hyperglycemia. Cardiac remodeling will lead to an imbalance in cell survival and death, which can promote cardiac dysfunction. Since the conventional treatment of DM generally does not address the prevention of cardiac remodeling, it is important to develop new alternatives for the treatment of cardiovascular complications induced by DM. Thus, therapy with mesenchymal stem cells has been shown to be a promising approach for the prevention of DCM because of their anti-apoptotic, anti-fibrotic and anti-inflammatory effects, which could improve cardiac function in patients with DM.


Subject(s)
Diabetic Cardiomyopathies/therapy , Mesenchymal Stem Cell Transplantation , Animals , Clinical Trials as Topic , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Epigenesis, Genetic , Humans , Models, Biological , Vascular Remodeling
11.
Arq. bras. cardiol ; 117(6): 1191-1201, dez. 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1350048

ABSTRACT

Resumo A prevalência de obesidade e insuficiência cardíaca com fração de ejeção preservada (ICFEP) aumenta significativamente em mulheres na pós-menopausa. Embora a obesidade seja um fator de risco para disfunção diastólica do ventrículo esquerdo (DDFVE), o mecanismo que liga a interrupção da produção de hormônios ovarianos, especialmente o estrogênio, ao desenvolvimento da obesidade, DDFVE, e ICFEP em mulheres em processo de envelhecimento não é claro. Estudos clínicos e epidemiológicos demonstram que mulheres na pós-menopausa com obesidade abdominal (definida pela circunferência de cintura) têm risco maior de desenvolver a ICFEP do que homens ou mulheres sem obesidade abdominal. Este estudo analisa dados clínicos que corroboram a existência de uma ligação de mecanismo entre a perda de estrogênio mais obesidade e o remodelamento ventricular esquerdo com ICFEP. Ele também discute os possíveis mecanismos celulares e moleculares para a proteção mediada por estrogênio contra tipos de células, depósitos de tecidos, função e metabolismo de adipócitos negativos que podem contribuir para a DDFVE e a ICFEP.


Abstract The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.


Subject(s)
Humans , Male , Female , Ventricular Dysfunction, Left/etiology , Heart Failure/etiology , Stroke Volume , Ventricular Function, Left , Estrogens , Obesity, Abdominal/complications
12.
Arq Bras Cardiol ; 117(6): 1191-1201, 2021 12.
Article in English, Portuguese | MEDLINE | ID: mdl-34644788

ABSTRACT

The prevalence of obesity and heart failure with preserved ejection fraction (HFpEF) increases significantly in postmenopausal women. Although obesity is a risk factor for left ventricular diastolic dysfunction (LVDD), the mechanisms that link the cessation of ovarian hormone production, and particularly estrogens, to the development of obesity, LVDD, and HFpEF in aging females are unclear. Clinical, and epidemiologic studies show that postmenopausal women with abdominal obesity (defined by waist circumference) are at greater risk for developing HFpEF than men or women without abdominal obesity. The study presents a review of clinical data that support a mechanistic link between estrogen loss plus obesity and left ventricular remodeling with LVDD. It also seeks to discuss potential cell and molecular mechanisms for estrogen-mediated protection against adverse adipocyte cell types, tissue depots, function, and metabolism that may contribute to LVDD and HFpEF.


A prevalência de obesidade e insuficiência cardíaca com fração de ejeção preservada (ICFEP) aumenta significativamente em mulheres na pós-menopausa. Embora a obesidade seja um fator de risco para disfunção diastólica do ventrículo esquerdo (DDFVE), o mecanismo que liga a interrupção da produção de hormônios ovarianos, especialmente o estrogênio, ao desenvolvimento da obesidade, DDFVE, e ICFEP em mulheres em processo de envelhecimento não é claro. Estudos clínicos e epidemiológicos demonstram que mulheres na pós-menopausa com obesidade abdominal (definida pela circunferência de cintura) têm risco maior de desenvolver a ICFEP do que homens ou mulheres sem obesidade abdominal. Este estudo analisa dados clínicos que corroboram a existência de uma ligação de mecanismo entre a perda de estrogênio mais obesidade e o remodelamento ventricular esquerdo com ICFEP. Ele também discute os possíveis mecanismos celulares e moleculares para a proteção mediada por estrogênio contra tipos de células, depósitos de tecidos, função e metabolismo de adipócitos negativos que podem contribuir para a DDFVE e a ICFEP.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Estrogens , Female , Heart Failure/etiology , Humans , Male , Obesity, Abdominal/complications , Stroke Volume , Ventricular Dysfunction, Left/etiology , Ventricular Function, Left
13.
Molecules ; 26(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34443416

ABSTRACT

Acylhydrazones are still an important framework to the design of new bioactive compounds. As treatment of chronic pain represents a clinical challenge, we decided to modify the structure of LASSBio-1514 (1), previously described as anti-inflammatory and analgesic prototype. Applying the homologation as a strategy for molecular modification, we designed a series of cyclopentyl- (2a-e), cyclobutyl- (3a-e), and cyclopropylacylhydrazones (4a-e) that were synthetized and evaluated in murine models of inflammation and pain. A comparison of their in silico physicochemical and drug-like profile was conducted, as well as their anti-inflammatory and analgesic effect. Compounds 4a (LASSBio-1755) and 4e (LASSBio-1757) displayed excellent in silico drug-like profiles and were identified as new analgesic lead-candidates in acute and chronic model of pain, through oral administration.


Subject(s)
Computer Simulation , Drug Design , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Pharmaceutical Preparations/chemical synthesis , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Aspirin/pharmacology , Caco-2 Cells , Humans , Hydrazones/chemistry , Hyperalgesia/pathology , Indomethacin/pharmacology , Male , Mice , Molecular Conformation , Molecular Weight , Pharmaceutical Preparations/chemistry , Rats, Wistar
14.
Cells ; 10(7)2021 06 30.
Article in English | MEDLINE | ID: mdl-34209333

ABSTRACT

Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.


Subject(s)
Hypertension, Pulmonary/drug therapy , Protein Kinase Inhibitors/therapeutic use , rho-Associated Kinases/antagonists & inhibitors , Animals , Clinical Trials as Topic , Disease Models, Animal , Drug Approval , Humans , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/chemistry , rho-Associated Kinases/metabolism
15.
Int J Mol Sci ; 22(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34299066

ABSTRACT

Stem cell therapy is a promising alternative approach to heart diseases. The most prevalent source of multipotent stem cells, usually called somatic or adult stem cells (mesenchymal stromal/stem cells, MSCs) used in clinical trials is bone marrow (BM-MSCs), adipose tissue (AT-MSCs), umbilical cord (UC-MSCs) and placenta. Therapeutic use of MSCs in cardiovascular diseases is based on the benefits in reducing cardiac fibrosis and inflammation that compose the cardiac remodeling responsible for the maintenance of normal function, something which may end up causing progressive and irreversible dysfunction. Many factors lead to cardiac fibrosis and failure, and an effective therapy is lacking to reverse or attenuate this condition. Different approaches have been shown to be promising in surpassing the poor survival of transplanted cells in cardiac tissue to provide cardioprotection and prevent cardiac remodeling. This review includes the description of pre-clinical and clinical investigation of the therapeutic potential of MSCs in improving ventricular dysfunction consequent to diverse cardiac diseases.


Subject(s)
Fibrosis/therapy , Heart Diseases/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Animals , Humans
16.
J Pain Res ; 14: 857-866, 2021.
Article in English | MEDLINE | ID: mdl-33833563

ABSTRACT

INTRODUCTION: New therapeutic alternatives for pain relief include the use of phosphodiesterase-5 (PDE5) inhibitors, which could prevent the transmission of painful stimuli by neuron hyperpolarization via nitric oxide (NO)/cyclic 3',5'-guanosine monophosphate (cGMP) pathway. The present work investigated the antinociceptive activity of a new PDE5 inhibitor, lodenafil carbonate, in inflammatory and neuropathic pain models. METHODS AND RESULTS: Although no effect was detected on neurogenic phase of formalin test in mice, oral administration of lodenafil carbonate dose-dependently reduced reactivity in the inflammatory phase (200.6 ± 39.1 to 81.9 ± 18.8 s at 10 µmol/kg, p= 0.0172) and this effect was totally blocked by NO synthase inhibitor, L-Nω-nitroarginine methyl ester (L-NAME). Lodenafil carbonate (10 µmol/kg p.o.) significantly reduced nociceptive response as demonstrated by increased paw withdrawal latency to thermal stimulus (from 6.8 ± 0.7 to 10.6 ± 1.3 s, p= 0.0006) and paw withdrawal threshold to compressive force (from 188.0 ± 14.0 to 252.5 ± 5.3 g, p<0.0001) in carrageenan-induced paw inflammation model. In a spinal nerve ligation-induced neuropathic pain, oral lodenafil carbonate (10 µmol/kg) also reversed thermal hyperalgesia and mechanical allodynia by increasing paw withdrawal latency from 17.9 ± 1.5 to 22.8 ± 1.9 s (p= 0.0062) and paw withdrawal threshold from 26.0 ± 2.8 to 41.4 ± 2.9 g (p= 0.0196). These effects were reinforced by the reduced GFAP (3.4 ± 0.5 to 1.4 ± 0.3%, p= 0.0253) and TNF-alpha (1.1 ± 0.1 to 0.4 ± 0.1%, p= 0.0111) stained area densities as detected by immunofluorescence in ipsilateral dorsal horns. CONCLUSION: Lodenafil carbonate demonstrates important analgesic activity by promoting presynaptic hyperpolarization and preventing neuroplastic changes, which may perpetuate chronic pain, thus representing a potential treatment for neuropathic pain.

17.
Int J Mol Sci ; 22(2)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430254

ABSTRACT

Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERß), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.


Subject(s)
Estradiol/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Myocardial Infarction/drug therapy , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Estrogens/genetics , Estrogens/metabolism , Female , Humans , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics
18.
Cells ; 9(9)2020 09 18.
Article in English | MEDLINE | ID: mdl-32961896

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by the remodeling of pulmonary arteries, with an increased pulmonary arterial pressure and right ventricle (RV) overload. This work investigated the benefit of the association of human umbilical cord mesenchymal stem cells (hMSCs) with lodenafil, a phosphodiesterase-5 inhibitor, in an animal model of PAH. Male Wistar rats were exposed to hypoxia (10% O2) for three weeks plus a weekly i.p. injection of a vascular endothelial growth factor receptor inhibitor (SU5416, 20 mg/kg, SuHx). After confirmation of PAH, animals received intravenous injection of 5.105 hMSCs or vehicle, followed by oral treatment with lodenafil carbonate (10 mg/kg/day) for 14 days. The ratio between pulmonary artery acceleration time and RV ejection time reduced from 0.42 ± 0.01 (control) to 0.24 ± 0.01 in the SuHx group, which was not altered by lodenafil alone but was recovered to 0.31 ± 0.01 when administered in association with hMSCs. RV afterload was confirmed in the SuHx group with an increased RV systolic pressure (mmHg) of 52.1 ± 8.8 normalized to 29.6 ± 2.2 after treatment with the association. Treatment with hMSCs + lodenafil reversed RV hypertrophy, fibrosis and interstitial cell infiltration in the SuHx group. Combined therapy of lodenafil and hMSCs may be a strategy for PAH treatment.


Subject(s)
Antihypertensive Agents/pharmacology , Carbonates/pharmacology , Hypertension, Pulmonary/therapy , Hypertrophy, Right Ventricular/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Phosphodiesterase 5 Inhibitors/pharmacology , Piperazines/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Animals , Combined Modality Therapy/methods , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Disease Models, Animal , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/genetics , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia/physiopathology , Hypoxia/therapy , Indoles/pharmacology , Male , Mesenchymal Stem Cells/physiology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/physiopathology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Treatment Outcome , Umbilical Cord/cytology , Umbilical Cord/physiology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
Drug Des Devel Ther ; 14: 3337-3350, 2020.
Article in English | MEDLINE | ID: mdl-32884238

ABSTRACT

INTRODUCTION: Diabetic obese patients are susceptible to the development of cardiovascular disease, including hypertension and cardiac dysfunction culminating in diabetic cardiomyopathy (DC), which represents a life-threatening health problem with increased rates of morbidity and mortality. The aim of the study is to characterize the effects of a new benzofuran N-acylhydrazone compound, LASSBio-2090, on metabolic and cardiovascular alterations in Zucker diabetic fatty (ZDF) rats presenting DC. METHODS: Male non-diabetic lean Zucker rats (ZL) and ZDF rats treated with vehicle (dimethylsulfoxide) or LASSBio-2090 were used in this study. Metabolic parameters, cardiovascular function, left ventricle histology and inflammatory protein expression were analyzed in the experimental groups. RESULTS: LASSBio-2090 administration in ZDF rats reduced glucose levels to 85.0 ± 1.7 mg/dL (p < 0.05). LASSBio-2090 also lowered the cholesterol and triglyceride levels from 177.8 ± 31.2 to 104.8 ± 5.3 mg/dL and from 123.0 ± 11.4 to 90.9 ± 4.8 mg/dL, respectively, in obese diabetic rats (p < 0.05). LASSBio-2090 normalized plasma insulin, insulin sensitivity and endothelial function in aortas from diabetic animals (p < 0.05). It also enhanced systolic and diastolic left-ventricular function and reverted myocardial remodeling by blocking the threefold elevation of TNF-α levels in hearts from ZDF rats. CONCLUSION: LASSBio-2090 alleviates metabolic disturbance and cardiomyopathy in an obese and diabetic rat model, thus representing a novel strategy for the treatment of cardiovascular complications in obesity-associated type 2 diabetes mellitus.


Subject(s)
Benzofurans/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/drug therapy , Obesity/drug therapy , Animals , Benzofurans/administration & dosage , Benzofurans/chemistry , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Injections, Intraperitoneal , Male , Molecular Structure , Obesity/metabolism , Rats , Rats, Zucker
20.
Pharmacol Rep ; 71(6): 1190-1200, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31669883

ABSTRACT

BACKGROUND: Increased mortality due to type 2 diabetes mellitus (T2DM) has been associated with renal and/or cardiovascular dysfunction. Dipeptidyl dipeptidase-4 inhibitors (iDPP-4s) may exert cardioprotective effects through their pleiotropic actions via glucagon-like peptide 1-dependent mechanisms. In this study, the pharmacological profile of a new iDPP-4 (LASSBio-2124) was investigated in rats with cardiac and renal dysfunction induced by T2DM. METHODS: T2DM was induced in rats by 2 weeks of a high-fat diet followed by intravenous injection of streptozotocin. Metabolic disturbance and cardiac, vascular, and renal dysfunction were analyzed in the experimental groups. RESULTS: Sitagliptin and LASSBio-2124 administration after T2DM induction reduced elevated glucose levels to 319.8 ±â€¯13.2 and 279.7 ±â€¯17.8 mg/dL, respectively (p < 0.05). LASSBio-2124 also lowered the cholesterol and triglyceride levels from 76.8 ±â€¯8.0 to 42.7 ±â€¯3.2 mg/dL and from 229.7 ±â€¯25.4 to 100.7 ±â€¯17.1 mg/dL, in diabetic rats. Sitagliptin and LASSBio-2124 reversed the reduction of the plasma insulin level. LASSBio-2124 recovered the increased urinary flow in diabetic animals and reduced 24-h proteinuria from 23.7 ±â€¯1.5 to 13.3 ±â€¯2.8 mg (p < 0.05). It also reduced systolic and diastolic left-ventricular dysfunction in hearts from diabetic rats. CONCLUSION: The effects of LASSBio-2124 were superior to those of sitagliptin in the cardiovascular systems of T2DM rats. This new prototype showed promise for the avoidance of comorbidities in a T2DM experimental model, and thus may constitute an innovative therapeutic agent for the treatment of these conditions in the clinical field in future.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Heart/drug effects , Kidney Diseases/drug therapy , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide 1/metabolism , Kidney Diseases/metabolism , Male , Rats , Rats, Wistar , Sitagliptin Phosphate/pharmacology , Streptozocin/pharmacology , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...