Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 2769, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797328

ABSTRACT

We report the direct observation of an electrically-induced magnetic susceptibility in the molecular nano- magnet [Fe3O(O2CPh)6(py)3]ClO4·py, an Fe3 trimer. This magnetoelectric effect results from the breaking of spatial inversion symmetry due to the spin configurations of the antiferromagnetic trimer. Both static and very low frequency electric fields were used. Fractional changes of the magnetic susceptibility of 11 ppb[Formula: see text] per kVm-1 for the temperature range 8.5 < T < 13.5 K were observed for applied electric fields up to 62 kV m-1. The changes in susceptibility were measured using a tunnel diode oscillator operating at liquid helium temperatures while the sample is held at a higher regulated temperature.

2.
J Phys Condens Matter ; 34(20)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35189602

ABSTRACT

With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9with Sr doping on non-magnetic Ba2+ion sites. The results show that Ba2.87Sr0.13CoSb2O9exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24µB/Co; (iii) a series of spin state transitions for bothH∥ab-plane andH∥c-axis. ForH∥ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.

3.
Phys Rev Lett ; 126(20): 207201, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34110224

ABSTRACT

We present a combined experimental and theoretical study of the mineral atacamite Cu_{2}Cl(OH)_{3}. Density-functional theory yields a Hamiltonian describing anisotropic sawtooth chains with weak 3D connections. Experimentally, we fully characterize the antiferromagnetically ordered state. Magnetic order shows a complex evolution with the magnetic field, while, starting at 31.5 T, we observe a plateaulike magnetization at about M_{sat}/2. Based on complementary theoretical approaches, we show that the latter is unrelated to the known magnetization plateau of a sawtooth chain. Instead, we provide evidence that the magnetization process in atacamite is a field-driven canting of a 3D network of weakly coupled sawtooth chains that form giant moments.

4.
Proc Natl Acad Sci U S A ; 117(38): 23467-23476, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32887802

ABSTRACT

The temperature-dependent evolution of the Kondo lattice is a long-standing topic of theoretical and experimental investigation and yet it lacks a truly microscopic description of the relation of the basic f-c hybridization processes to the fundamental temperature scales of Kondo screening and Fermi-liquid lattice coherence. Here, the temperature dependence of f-c hybridized band dispersions and Fermi-energy f spectral weight in the Kondo lattice system CeCoIn5 is investigated using f-resonant angle-resolved photoemission spectroscopy (ARPES) with sufficient detail to allow direct comparison to first-principles dynamical mean-field theory (DMFT) calculations containing full realism of crystalline electric-field states. The ARPES results, for two orthogonal (001) and (100) cleaved surfaces and three different f-c hybridization configurations, with additional microscopic insight provided by DMFT, reveal f participation in the Fermi surface at temperatures much higher than the lattice coherence temperature, [Formula: see text] K, commonly believed to be the onset for such behavior. The DMFT results show the role of crystalline electric-field (CEF) splittings in this behavior and a T-dependent CEF degeneracy crossover below [Formula: see text] is specifically highlighted. A recent ARPES report of low T Luttinger theorem failure for CeCoIn5 is shown to be unjustified by current ARPES data and is not found in the theory.

5.
Phys Rev Lett ; 122(16): 166401, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31075018

ABSTRACT

SmB_{6} is a candidate topological Kondo insulator that displays surface conduction at low temperatures. Here, we perform torque magnetization measurements as a means to detect de Haas-van Alphen (dHvA) oscillations in SmB_{6} crystals grown by aluminum flux. We find that dHvA oscillations occur in single crystals containing embedded aluminum, originating from the flux used to synthesize SmB_{6}. Measurements on a sample with multiple, unconnected aluminum inclusions show that aluminum crystallizes in a preferred orientation within the SmB_{6} cubic lattice. The presence of aluminum is confirmed through bulk susceptibility measurements, but does not show a signature in transport measurements. We discuss the ramifications of our results.

6.
Nat Commun ; 8(1): 99, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740123

ABSTRACT

The thermal and magnetic properties of uranium dioxide, a prime nuclear fuel and thoroughly studied actinide material, remain a long standing puzzle, a result of strong coupling between magnetism and lattice vibrations. The magnetic state of this cubic material is characterized by a 3-k non-collinear antiferromagnetic structure and multidomain Jahn-Teller distortions, likely related to its anisotropic thermal properties. Here we show that single crystals of uranium dioxide subjected to strong magnetic fields along threefold axes in the magnetic state exhibit the abrupt appearance of positive linear magnetostriction, leading to a trigonal distortion. Upon reversal of the field the linear term also reverses sign, a hallmark of piezomagnetism. A switching phenomenon occurs at ±18 T, which persists during subsequent field reversals, demonstrating a robust magneto-elastic memory that makes uranium dioxide the hardest piezomagnet known. A model including a strong magnetic anisotropy, elastic, Zeeman, Heisenberg exchange, and magnetoelastic contributions to the total energy is proposed.The nuclear fuel uranium dioxide is of intrinsic interest due to its industrial applications but it also exhibits intriguing electronic and magnetic properties. Here, the authors demonstrate how its complex magnetic structure and interactions give rise to a strong piezomagnetic effect.

7.
Phys Rev Lett ; 115(13): 137201, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26451580

ABSTRACT

We report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni_{3}TeO_{6} that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 µC/cm^{2}, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 T transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. The resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.

8.
Phys Rev Lett ; 112(1): 017207, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24483929

ABSTRACT

We study vanadium spinels AV2O4 (A = Cd,Mg) in pulsed magnetic fields up to 65 T. A jump in magnetization at µ0H≈40 T is observed in the single-crystal MgV2O4, indicating a field induced quantum phase transition between two distinct magnetic orders. In the multiferroic CdV2O4, the field induced transition is accompanied by a suppression of the electric polarization. By modeling the magnetic properties in the presence of strong spin-orbit coupling characteristic of vanadium spinels, we show that both features of the field induced transition can be successfully explained by including the effects of the local trigonal crystal field.

9.
J Phys Condens Matter ; 25(21): 216008, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23649209

ABSTRACT

We study the strongly anisotropic quasi-one-dimensional S = 1 quantum magnet NiCl2·4SC(NH2)2 using elastic and inelastic neutron scattering. We demonstrate that a magnetic field splits the excited doublet state and drives the lower doublet state to zero energy at a critical field Hc1. For Hc1 < H < Hc2, where Hc2 indicates the transition to a fully magnetized state, three-dimensional magnetic order is established with the AF moment perpendicular to the magnetic field. We mapped the temperature/magnetic field phase diagram, and we find that the total ordered magnetic moment reaches m(tot) = 2.1 µB at the field µ(0)H = 6 T and is thus close to the saturation value of the fully ordered moment. We study the magnetic spin dynamics in the fully magnetized state for H > Hc2, and we demonstrate the presence of an AF interaction between Ni(2+) on the two interpenetrating sublattices. In the antiferromagnetically ordered phase, the spin-waves that develop from the lower-energy doublet are split into two modes. This is most likely the result of the presence of the AF interaction between the interpenetrating lattices.

10.
Phys Rev Lett ; 106(3): 037203, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21405291

ABSTRACT

Several quantum paramagnets exhibit magnetic-field-induced quantum phase transitions to an antiferromagnetic state that exists for H c1 ≤ H ≤ H c2. For some of these compounds, there is a significant asymmetry between the low- and high-field transitions. We present specific heat and thermal conductivity measurements in NiCl2-4SC(NH2)2, together with calculations which show that the asymmetry is caused by a strong mass renormalization due to quantum fluctuations for H ≤ H c1 that are absent for H ≥ H c2. We argue that the enigmatic lack of asymmetry in thermal conductivity is due to a concomitant renormalization of the impurity scattering.

11.
Phys Rev Lett ; 101(24): 247202, 2008 Dec 12.
Article in English | MEDLINE | ID: mdl-19113659

ABSTRACT

The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder compound (C5H12N)2CuBr4 is studied by measurements of the specific heat and the magnetocaloric effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian, comprehensive numerical modeling of the ladder specific heat yields excellent quantitative agreement with the experimental data across the entire phase diagram.

12.
Phys Rev Lett ; 101(18): 187205, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999861

ABSTRACT

In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl2-4SC(NH2)_{2} using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H_{c1} approximately 2 T and a upper critical field H_{c2} approximately 12 T. The results show a power-law temperature dependence of the phase transition line H_{c1}(T)-H_{c1}(0)=aT;{alpha} with alpha=1.47+/-0.10 and H_{c1}(0)=2.053 T, consistent with the 3D BEC universality class. Near H_{c2}, a kink was found in the phase boundary at approximately 150 mK.

13.
Phys Rev Lett ; 98(4): 047205, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17358808

ABSTRACT

NiCl(2)-4SC(NH(2))(2) (DTN) is a quantum S=1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204 (2006)10.1103/PhysRevLett.96.077204], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D=8.9 K, J(c) = 2.2 K, and J(a,b) = 0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization, and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained.

14.
Phys Rev Lett ; 96(18): 189703; author reply 189704, 2006 May 12.
Article in English | MEDLINE | ID: mdl-16712410
15.
Phys Rev Lett ; 96(7): 077204, 2006 Feb 24.
Article in English | MEDLINE | ID: mdl-16606135

ABSTRACT

It has recently been suggested that the organic compound NiCl2-4SC(NH2)2 (DTN) undergoes field-induced Bose-Einstein condensation (BEC) of the Ni spin degrees of freedom. The Ni S = 1 spins exhibit three-dimensional XY antiferromagnetism above a critical field H(c1) approximately 2 T. The spin fluid can be described as a gas of hard-core bosons where the field-induced antiferromagnetic transition corresponds to Bose-Einstein condensation. We have determined the spin Hamiltonian of DTN using inelastic neutron diffraction measurements, and we have studied the high-field phase diagram by means of specific heat and magnetocaloric effect measurements. Our results show that the field-temperature phase boundary approaches a power-law H - H(c1) proportional variant T(alpha)(c) near the quantum critical point, with an exponent that is consistent with the 3D BEC universal value of alpha = 1.5.

16.
Phys Rev Lett ; 94(4): 046401, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783577

ABSTRACT

The URu2-xRexSi2 system exhibits ferromagnetic order for Re concentrations 0.3 < x < or =1.0. Non-Fermi-liquid (NFL) behavior is observed in the specific heat for 0.15< or = x< or =0.6 [C/T proportional to, -lnT (or T(-0.1))], and also in the power-law T dependence of the electrical resistivity [rhoT proportional to, Tn] with n<2 for 0.15< or = x <0.8, at low T, providing strong evidence that the NFL behavior persists within the ferromagnetic phase. Furthermore, the deviation of the physical properties of URu2-xRexSi2 from Fermi-liquid behavior is most pronounced at the ferromagnetic quantum critical point, and the NFL behavior found in the ferromagnetic phase may be consistent with the Griffiths-McCoy phase model.

17.
Phys Rev Lett ; 90(5): 057001, 2003 Feb 07.
Article in English | MEDLINE | ID: mdl-12633389

ABSTRACT

We report the magnetic field dependence of the specific-heat C of single crystals of the first Pr-based heavy-fermion superconductor Pr(Os4Sb12. The variation of C at low temperature and the magnetic phase diagram inferred from C, the resistivity and magnetization provide compelling evidence of a doublet ground state. Two distinct superconducting anomalies in C indicate an unconventional superconducting state, where the splitting may arise from a weak lifting of the ground state degeneracy. In combination this identifies Pr(Os4Sb12 as a strong contender for quadrupolar pairing, i.e., superconductivity that is neither electron-phonon nor magnetically mediated.

SELECTION OF CITATIONS
SEARCH DETAIL
...