Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(25): 11737-11744, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38865158

ABSTRACT

The Heisenberg antiferromagnetic chain is a canonical model for understanding many-body gaps that emerge in quantum magnets, and as a result, there has been significant work on this class of materials for much of the past century. Chiral chains, on the other hand, have received markedly less attention. [Cu(pym)(H2O)4]SiF6·H2O (pym = pyrimidine) is an S = 1/2 chiral antiferromagnet with an unconventional spin gap and no long-range ordering at zero field, features that distinguish it from more conventional spin chains that host simple phase diagrams and no magnetoelectric coupling. Here, we report pulsed magnetic field electrical polarization measurements, strong magnetoelectric coupling, and extraordinary magnetic field - temperature phase diagrams for this system. In addition to three low field transitions, we find a series of phase transitions between 40 and 70 T that depend on the magnetic field direction. The observation of electric polarization in a material with a nonpolar crystal structure implies symmetry-breaking magnetic ordering that creates a polar axis - a mechanism that we discuss in terms of significant interactions between the chiral chains as well as Dzyaloshinskii-Moriya effects. Further, we find second-order magnetoelectric coupling, allowing us to deduce the magnetic point group of the highest polarization phase. These findings are in contrast to expectations for an unordered one-dimensional spin chain and reveal a significantly greater complexity of behavior in applied field.

2.
PNAS Nexus ; 3(1): pgad428, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234583

ABSTRACT

There has been a recent surge of interest in UTe2 due to its unconventional magnetic field (H)-reinforced spin-triplet superconducting phases persisting at fields far above the simple Pauli limit for H∥[010]. Magnetic fields in excess of 35 T then induce a field-polarized magnetic state via a first-order-like phase transition. More controversially, for field orientations close to H∥[011] and above 40 T, electrical resistivity measurements suggest that a further superconducting state may exist. However, no Meissner effect or thermodynamic evidence exists to date for this phase making it difficult to exclude alternative scenarios. In this paper, we describe a study using thermal, electrical, and magnetic probes in magnetic fields of up to 55 T applied between the [010] (b) and [001] (c) directions. Our MHz conductivity data reveal the field-induced state of low or vanishing electrical resistance; our simultaneous magnetocaloric effect measurements (i.e. changes in sample temperature due to changing magnetic field) show the first definitive evidence for adiabaticity and thermal behavior characteristic of bulk field-induced superconductivity.

3.
Phys Rev Lett ; 131(14): 146701, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862638

ABSTRACT

Continuous spin excitations are widely recognized as one of the hallmarks of novel spin states in quantum magnets, such as quantum spin liquids (QSLs). Here, we report the observation of such kind of excitations in K_{2}Ni_{2}(SO_{4})_{3}, which consists of two sets of intersected spin-1 (Ni^{2+}) trillium lattices. Our inelastic neutron scattering measurement on single crystals clearly shows a dominant excitation continuum, which exhibits a distinct temperature-dependent behavior from that of spin waves, and is rooted in strong quantum spin fluctuations. Further using the self-consistent-Gaussian-approximation method, we determine that the fourth- and fifth-nearest-neighbor exchange interactions are dominant. These two bonds together form a unique three-dimensional network of corner-sharing tetrahedra, which we name as a "hypertrillium" lattice. Our results provide direct evidence for the existence of QSL features in K_{2}Ni_{2}(SO_{4})_{3} and highlight the potential for the hypertrillium lattice to host frustrated quantum magnetism.

4.
Angew Chem Int Ed Engl ; 61(52): e202214335, 2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36307376

ABSTRACT

Magnetoelectric coupling is achieved near room temperature in a spin crossover FeII molecule-based compound, [Fe(1bpp)2 ](BF4 )2 . Large atomic displacements resulting from Jahn-Teller distortions induce a change in the molecule dipole moment when switching between high-spin and low-spin states leading to a step-wise change in the electric polarization and dielectric constant. For temperatures in the region of bistability, the changes in magnetic and electrical properties are induced with a remarkably low magnetic field of 3 T. This result represents a successful expansion of magnetoelectric spin crossovers towards ambient conditions. Moreover, the observed 0.3-0.4 mC m-2 changes in the H-induced electric polarization suggest that the high strength of the coupling obtained via this route is accessible not just at cryogenic temperatures but also near room temperature, a feature that is especially appealing in the light of practical applications.

5.
J Phys Chem Lett ; 13(10): 2365-2370, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35254080

ABSTRACT

The single-molecule magnet {Mn84} is a challenge to theory because of its high nuclearity. We directly compute two experimentally accessible observables, the field-dependent magnetization up to 75 T and the temperature-dependent heat capacity, using parameter-free theory. In particular, we use first-principles calculations to derive short- and long-range exchange interactions and compute the exact partition function of the resulting classical Potts and Ising spin models for all 84 Mn S = 2 spins to obtain observables. The latter computation is made possible by using hyperoptimized tensor network contractions, a technique developed to simulate quantum supremacy circuits. We also synthesize the magnet and measure its heat capacity and magnetization, observing qualitative agreement between theory and experiment and identifying an unusual bump in the heat capacity and a plateau in the magnetization. Our work also identifies some limitations of current theoretical modeling in large magnets, such as sensitivity to small, long-range exchange couplings.

6.
Inorg Chem ; 61(14): 5469-5473, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35343233

ABSTRACT

Organic-inorganic hybrids of halogenoindates(III) are typically represented by one of the zero-dimensional units: InX4-, InX52-, InX63-, or In2X115-. Higher dimensional anionic forms, although not forbidden, have remained almost elusive. Here we report for the first time In3+-based organic-inorganic hybrids, (C4H5N2S)2InCl5 and (C4H5N2S)2InBr5, with 1D anionic chains of trans-halide-bridged InX6 octahedra whose formation is guided by 2-mercaptopyrimidinium cations (C4H5N2S+). The chains are characterized by the significant ease of deformation, which is reflected in the elongation of the bridging bonds or the displacement of In3+ ions. The materials show a robust band gap predominantly governed by C4H5N2S+ cations. Dielectric relaxation processes in (C4H5N2S)2InBr5 arise from the cations' dynamics and suggest the ability of the brominated system to accommodate even larger cations. Our work represents a successful attempt to expand the structural diversity of halogenoindates(III) and opens a pathway to reach multifunctional 1D In3+-based hybrids.

8.
Inorg Chem ; 61(8): 3434-3442, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35171587

ABSTRACT

We combine high field polarization, magneto-infrared spectroscopy, and lattice dynamics calculations with prior magnetization to explore the properties of (NH4)2[FeCl5·(H2O)]─a type II molecular multiferroic in which the mixing between charge, structure, and magnetism is controlled by intermolecular hydrogen and halogen bonds. Electric polarization is sensitive to the series of field-induced spin reorientations, increasing linearly with the field and reaching a maximum before collapsing to zero across the quasi-collinear to collinear-sinusoidal reorientation due to the restoration of inversion symmetry. Magnetoelectric coupling is on the order of 1.2 ps/m for the P∥c, H∥c configuration between 5 and 25 T at 1.5 K. In this range, the coupling takes place via an orbital hybridization mechanism. Other forms of mixing are active in (NH4)2[FeCl5·(H2O)] as well. Magneto-infrared spectroscopy reveals that all of the vibrational modes below 600 cm-1 are sensitive to the field-induced transition to the fully saturated magnetic state at 30 T. We analyze these local lattice distortions and use frequency shifts to extract spin-phonon coupling constants for the Fe-O stretch, Fe-OH2 rock, and NH4+ libration. Inspection also reveals subtle symmetry breaking of the ammonium counterions across the ferroelectric transition. The coexistence of such varied mixing processes in a platform with intermolecular hydrogen- and halogen-bonding opens the door to greater understanding of multiferroics and magnetoelectrics governed by through-space interactions.

9.
Angew Chem Int Ed Engl ; 61(4): e202114021, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34761504

ABSTRACT

A MnIII spin crossover complex with atypical two-step hysteretic thermal switching at 74 K and 84 K shows rich structural-magnetic interplay and magnetic-field-induced spin state switching below 14 T with an onset below 5 T. The spin states, structures, and the nature of the phase transitions are elucidated via X-ray and magnetization measurements. An unusual intermediate phase containing four individual sites, where 1 / 4 are in a pure low spin state, is observed. The splitting of equivalent sites in the high temperature phase into four inequivalent sites is due to a structural reorganization involving a primary and a secondary symmetry-breaking order parameter that induces a crystal system change from orthorhombic→monoclinic and a cell doubling. Further cooling leads to a reconstructive phase transition and a monoclinic low-temperature phase with two inequivalent low-spin sites. The coupling between the order parameters is identified in the framework of Landau theory.

10.
Chem Commun (Camb) ; 58(5): 661-664, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34914817

ABSTRACT

The [Co(SQ)2(4-CN-py)2] complex exhibits dynamical effects over a wide range of temperature. The orbital moment, determined by X-ray magnetic circular dichroism (XMCD) with decreasing applied magnetic field, indicates a nonzero critical field for net alignment of magnetic moments, an effect not seen with the spin moment of [Co(SQ)2(4-CN-py)2].

11.
J Am Chem Soc ; 144(1): 195-211, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34939802

ABSTRACT

Pinned and mobile ferroelastic domain walls are detected in response to mechanical stress in a Mn3+ complex with two-step thermal switching between the spin triplet and spin quintet forms. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy on [MnIII(3,5-diCl-sal2(323))]BPh4 reveal three distinct symmetry-breaking phase transitions in the polar space group series Cc → Pc → P1 → P1(1/2). The transition mechanisms involve coupling between structural and spin state order parameters, and the three transitions are Landau tricritical, first order, and first order, respectively. The two first-order phase transitions also show changes in magnetic properties and spin state ordering in the Jahn-Teller-active Mn3+ complex. On the basis of the change in symmetry from that of the parent structure, Cc, the triclinic phases are also ferroelastic, which has been confirmed by resonant ultrasound spectroscopy. Measurements of magnetoelectric coupling revealed significant changes in electric polarization at both the Pc → P1 and P1 → P1(1/2) transitions, with opposite signs. All these phases are polar, while P1 is also chiral. Remanent electric polarization was detected when applying a pulsed magnetic field of 60 T in the P1→ P1(1/2) region of bistability at 90 K. Thus, we showcase here a rare example of multifunctionality in a spin crossover material where the strain and polarization tensors and structural and spin state order parameters are strongly coupled.

12.
Adv Sci (Weinh) ; 8(23): e2101402, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34719881

ABSTRACT

The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3 O4 and MnV2 O4 and stripe-like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small-angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.

13.
Nat Commun ; 12(1): 5339, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504085

ABSTRACT

Ferrotoroidal order, which represents a spontaneous arrangement of toroidal moments, has recently been found in a few linear magnetoelectric materials. However, tuning toroidal moments in these materials is challenging. Here, we report switching between ferritoroidal and ferrotoroidal phases by a small magnetic field, in a chiral triangular-lattice magnet BaCoSiO4 with tri-spin vortices. Upon applying a magnetic field, we observe multi-stair metamagnetic transitions, characterized by equidistant steps in the net magnetic and toroidal moments. This highly unusual ferri-ferroic order appears to come as a result of an unusual hierarchy of frustrated isotropic exchange couplings revealed by first principle calculations, and the antisymmetric exchange interactions driven by the structural chirality. In contrast to the previously known toroidal materials identified via a linear magnetoelectric effect, BaCoSiO4 is a qualitatively new multiferroic with an unusual coupling between several different orders, and opens up new avenues for realizing easily tunable toroidal orders.

14.
Inorg Chem ; 60(9): 6167-6175, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33331784

ABSTRACT

We investigate giant magnetoelectric coupling at a Mn3+ spin crossover in [MnIIIL]BPh4 (L = (3,5-diBr-sal)2323) with a field-induced permanent switching of the structural, electric, and magnetic properties. An applied magnetic field induces a first-order phase transition from a high spin/low spin (HS-LS) ordered phase to a HS-only phase at 87.5 K that remains after the field is removed. We observe this unusual effect for DC magnetic fields as low as 8.7 T. The spin-state switching driven by the magnetic field in the bistable molecular material is accompanied by a change in electric polarization amplitude and direction due to a symmetry-breaking phase transition between polar space groups. The magnetoelectric coupling occurs due to a γη2 coupling between the order parameter γ related to the spin-state bistability and the symmetry-breaking order parameter η responsible for the change of symmetry between polar structural phases. We also observe conductivity occurring during the spin crossover and evaluate the possibility that it results from conducting phase boundaries. We perform ab initio calculations to understand the origin of the electric polarization change as well as the conductivity during the spin crossover. Thus, we demonstrate a giant magnetoelectric effect with a field-induced electric polarization change that is 1/10 of the record for any material.

15.
Phys Rev Lett ; 124(22): 227201, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567894

ABSTRACT

Three high-spin phases recently discovered in the spin-crossover system Mn(taa) are identified through analysis by a combination of first-principles calculations and Monte Carlo simulation as a low-temperature Jahn-Teller ordered (solid) phase, an intermediate-temperature dynamically correlated (liquid) phase, and an uncorrelated (gas) phase. In particular, the Jahn-Teller liquid phase arises from competition between mixing with low-spin impurities, which drive the disorder, and intermolecular strain interactions. The latter are a key factor in both the spin-crossover phase transition and the magnetoelectric coupling. Jahn-Teller liquids may exist in other spin-crossover materials and materials that have multiple equivalent Jahn-Teller axes.

16.
Angew Chem Int Ed Engl ; 59(32): 13305-13312, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32358911

ABSTRACT

Domain wall motion is detected for the first time during the transition to a ferroelastic and spin state ordered phase of a spin crossover complex. Single-crystal X-ray diffraction and resonant ultrasound spectroscopy (RUS) revealed two distinct symmetry-breaking phase transitions in the mononuclear Mn3+ compound [Mn(3,5-diBr-sal2 (323))]BPh4 , 1. The first at 250 K, involves the space group change Cc→Pc and is thermodynamically continuous, while the second, Pc→P1 at 85 K, is discontinuous and related to spin crossover and spin state ordering. Stress-induced domain wall mobility was interpreted on the basis of a steep increase in acoustic loss immediately below the the Pc-P1 transition.

17.
Nat Commun ; 10(1): 4043, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31492877

ABSTRACT

In magnetoelectric materials, magnetic and dielectric/ferroelectric properties couple to each other. This coupling could enable lower power consumption and new functionalities in devices such as sensors, memories and transducers, since voltages instead of electric currents are sensing and controlling the magnetic state. We explore a different approach to magnetoelectric coupling in which we use the magnetic spin state instead of the more traditional ferro or antiferromagnetic order to couple to electric properties. In our molecular compound, magnetic field induces a spin crossover from the S = 1 to the S = 2 state of Mn3+, which in turn generates molecular distortions and electric dipoles. These dipoles couple to the magnetic easy axis, and form different polar, antipolar and paraelectric phases vs magnetic field and temperature. Spin crossover compounds are a large class of materials where the spin state can modify the structure, and here we demonstrate that this is a route to magnetoelectric coupling.

18.
Rev Sci Instrum ; 89(8): 085109, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30184619

ABSTRACT

We present a high resolution method for measuring magnetostriction in millisecond pulsed magnetic fields at cryogenic temperatures with a sensitivity of 1.11×10-11/Hz . The sample is bonded to a thin piezoelectric plate such that when the sample's length changes, it strains the piezoelectric and induces a voltage change. This method is more sensitive than a fiber-Bragg grating method. It measures two axes simultaneously instead of one. The gauge is small and versatile, functioning in DC and millisecond pulsed magnetic fields. We demonstrate its use by measuring the magnetostriction of Ca3Co1.03Mn0.97O6 single crystals in pulsed magnetic fields. By comparing our data to new and previously published results from a fiber-Bragg grating magnetostriction setup, we confirm that this method detects magnetostriction effects. We also demonstrate the small size and versatility of this technique by measuring angle dependence with respect to the applied magnetic field in a rotator probe in 65 T millisecond pulsed magnetic fields.

19.
Sensors (Basel) ; 17(11)2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29117137

ABSTRACT

In this work, we review single mode SiO2 fiber Bragg grating techniques for dilatometry studies of small single-crystalline samples in the extreme environments of very high, continuous, and pulsed magnetic fields of up to 150 T and at cryogenic temperatures down to <1 K. Distinct millimeter-long materials are measured as part of the technique development, including metallic, insulating, and radioactive compounds. Experimental strategies are discussed for the observation and analysis of the related thermal expansion and magnetostriction of materials, which can achieve a strain sensitivity (ΔL/L) as low as a few parts in one hundred million (≈10-8). The impact of experimental artifacts, such as those originating in the temperature dependence of the fiber's index of diffraction, light polarization rotation in magnetic fields, and reduced strain transfer from millimeter-long specimens, is analyzed quantitatively using analytic models available in the literature. We compare the experimental results with model predictions in the small-sample limit, and discuss the uncovered discrepancies.

20.
J Am Chem Soc ; 138(4): 1122-5, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26717023

ABSTRACT

We present the first example of magnetic ordering-induced multiferroic behavior in a metal-organic framework magnet. This compound is [CH3NH3][Co(HCOO)3] with a perovskite-like structure. The A-site [CH3NH3](+) cation strongly distorts the framework, allowing anisotropic magnetic and electric behavior and coupling between them to occur. This material is a spin canted antiferromagnet below 15.9 K with a weak ferromagnetic component attributable to Dzyaloshinskii-Moriya (DM) interactions and experiences a discontinuous hysteretic magnetic-field-induced switching along [010] and a more continuous hysteresis along [101]. Coupling between the magnetic and electric order is resolved when the field is applied along this [101]: a spin rearrangement occurs at a critical magnetic field in the ac plane that induces a change in the electric polarization along [101] and [10-1]. The electric polarization exhibits an unusual memory effect, as it remembers the direction of the previous two magnetic-field pulses applied. The data are consistent with an inverse-DM mechanism for multiferroic behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...