Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 146: 415-421, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31911175

ABSTRACT

Endocrine disruptor compounds (EDCs) are pollutants able to alter both hormone synthesis and their regulation in animals and humans, thus, EDCs represent a risk for public health and for the environment. Cytochrome P450 enzymes (CYPs) are involved in the detoxification of a wide range of compounds, and it has been established that these enzymes produce the initial biotransformation of many EDCs. In this work, a bionanoreactor based on the encapsulation of an enhanced peroxygenase CYPBM321B3 inside the capsid of bacteriophage P22 virus-like particles (VLPs) was designed and characterized. VLPs were functionalized with glucose oxidase to generate in situ hydrogen peroxide necessary to activate the transformation of bisphenol A, nonylphenol, 17ß-estradiol, triclosan, and resorcinol. Catalytic parameters, as well as the chemical nature of reaction products are presented. The enzymatic nanoreactors showed specific activities varying from 0.175 to 0.456 min-1 in the transformation of these EDCs, which are equivalent to 22-77% of the activity obtained with free CYP. The capacity to transform structurally diverse compounds, easy production and glucose fueled catalytic activity make these enzymatic nanoreactors an interesting platform for enzyme delivery in the biomedical field.


Subject(s)
Bioreactors , Endocrine Disruptors/metabolism , Enzymes/metabolism , Nanoparticles/chemistry , Viruses/metabolism , Animals , Bacteriophage P22/metabolism , Biocatalysis , Biotransformation , Cytochrome P-450 Enzyme System/metabolism , Glucose Oxidase/metabolism , Humans , Nanoparticles/ultrastructure , Time Factors , Viruses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...