Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 509(7500): 353-6, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24805233

ABSTRACT

Electromagnetic noise is emitted everywhere humans use electronic devices. For decades, it has been hotly debated whether man-made electric and magnetic fields affect biological processes, including human health. So far, no putative effect of anthropogenic electromagnetic noise at intensities below the guidelines adopted by the World Health Organization has withstood the test of independent replication under truly blinded experimental conditions. No effect has therefore been widely accepted as scientifically proven. Here we show that migratory birds are unable to use their magnetic compass in the presence of urban electromagnetic noise. When European robins, Erithacus rubecula, were exposed to the background electromagnetic noise present in unscreened wooden huts at the University of Oldenburg campus, they could not orient using their magnetic compass. Their magnetic orientation capabilities reappeared in electrically grounded, aluminium-screened huts, which attenuated electromagnetic noise in the frequency range from 50 kHz to 5 MHz by approximately two orders of magnitude. When the grounding was removed or when broadband electromagnetic noise was deliberately generated inside the screened and grounded huts, the birds again lost their magnetic orientation capabilities. The disruptive effect of radiofrequency electromagnetic fields is not confined to a narrow frequency band and birds tested far from sources of electromagnetic noise required no screening to orient with their magnetic compass. These fully double-blinded tests document a reproducible effect of anthropogenic electromagnetic noise on the behaviour of an intact vertebrate.


Subject(s)
Animal Migration/physiology , Electromagnetic Fields/adverse effects , Magnetic Fields , Orientation/physiology , Songbirds/physiology , Aluminum , Animals , Cities , Conservation of Natural Resources , Double-Blind Method , Electricity/adverse effects , Electronics/instrumentation , Germany , Housing , Radio Waves/adverse effects , Reproducibility of Results , Seasons , Universities
2.
Eur J Neurosci ; 32(4): 619-24, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20618826

ABSTRACT

Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day.


Subject(s)
Animal Migration/physiology , Darkness , Light , Neurons/physiology , Songbirds , Animals , Behavior, Animal/physiology , Cues , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Gene Expression Regulation , Magnetics , Neurons/cytology , Orientation/physiology , Photic Stimulation , Songbirds/anatomy & histology , Songbirds/physiology
3.
Proc Natl Acad Sci U S A ; 107(20): 9394-9, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20439705

ABSTRACT

The upper beak of birds, which contains putative magnetosensory ferro-magnetic structures, is innervated by the ophthalmic branch of the trigeminal nerve (V1). However, because of the absence of replicable neurobiological evidence, a general acceptance of the involvement of the trigeminal nerve in magnetoreception is lacking in birds. Using an antibody to ZENK protein to indicate neuronal activation, we here document reliable magnetic activation of neurons in and near the principal (PrV) and spinal tract (SpV) nuclei of the trigeminal brainstem complex, which represent the two brain regions known to receive primary input from the trigeminal nerve. Significantly more neurons were activated in PrV and in medial SpV when European robins (Erithacus rubecula) experienced a magnetic field changing every 30 seconds for a period of 3 h (CMF) than when robins experienced a compensated, zero magnetic field condition (ZMF). No such differences in numbers of activated neurons were found in comparison structures. Under CMF conditions, sectioning of V1 significantly reduced the number of activated neurons in and near PrV and medial SpV, but not in lateral SpV or in the optic tectum. Tract tracing of V1 showed spatial proximity and regional overlap of V1 nerve endings and ZENK-positive (activated) neurons in SpV, and partly in PrV, under CMF conditions. Together, these results suggest that magnetic field changes activate neurons in and near the trigeminal brainstem complex and that V1 is necessary for this activation. We therefore suggest that V1 transmits magnetic information to the brain in this migratory passerine bird.


Subject(s)
Animal Migration/physiology , Brain Stem/physiology , Magnetics , Perception/physiology , Songbirds/physiology , Trigeminal Nerve/physiology , Afferent Pathways/physiology , Animals
4.
J R Soc Interface ; 7 Suppl 2: S227-33, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-19889693

ABSTRACT

Several studies have suggested that the magnetic compass of birds is located only in the right eye. However, here we show that night-migrating garden warblers (Sylvia borin) are able to perform magnetic compass orientation with both eyes open, with only the left eye open and with only the right eye open. We did not observe any clear lateralization of magnetic compass orientation behaviour in this migratory songbird, and, therefore, it seems that the suggested all-or-none lateralization of magnetic compass orientation towards the right eye only cannot be generalized to all birds, and that the answer to the question of whether magnetic compass orientation in birds is lateralized is probably not as simple as suggested previously.


Subject(s)
Animal Migration/physiology , Animal Migration/radiation effects , Birds/physiology , Functional Laterality/physiology , Orientation/physiology , Orientation/radiation effects , Visual Perception/radiation effects , Animals , Electromagnetic Fields , Functional Laterality/radiation effects , Humans , Light , Visual Perception/physiology
5.
Nature ; 461(7268): 1274-7, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19865170

ABSTRACT

Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.


Subject(s)
Animal Migration/physiology , Magnetics , Orientation/physiology , Songbirds/physiology , Vision, Ocular/physiology , Animals , Flight, Animal/physiology , Solar System , Trigeminal Nerve/physiology , Visual Perception/physiology
6.
PLoS One ; 3(3): e1768, 2008 Mar 12.
Article in English | MEDLINE | ID: mdl-18335043

ABSTRACT

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.


Subject(s)
Animal Communication , Birds/physiology , Learning , Models, Theoretical , Movement , Animals , Female , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...