Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sports Med Health Sci ; 6(2): 123-138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38708324

ABSTRACT

This scoping review aims (1) to map the literature dealing with neurophysiological and biomechanical aspects of back problems in athletes in order to identify valid risk-factors for their prevention, plus (2) to identify gaps in the existing research and propose suggestions for future studies. A literature search conducted with Scopus, Web of Science, MEDLINE and Cochrane Library was completed by Elsevier, SpringerLink and Google Scholar. The main neurophysiological risk factors identified leading to back problems in athletes are neuromuscular imbalance, increased muscle fatigability, muscle dysfunction and impaired motor control, whilst biomechanical risk factors include maladaptive spinal, spinopelvic and lower limb kinematics, side-to-side imbalances in axial strength and hip rotation range of motion, spinal overloading and deficits in movement pattern. However, most studies focused on back pain in the lumbar region, whereas less attention has been paid to thoracic and cervical spine problems. The range of sports where this topic has been studied is relatively small. There is a lack of research in sports in which the core muscles are highly involved in specific movements such as lifting weights or trunk rotations. A limited number of studies include female athletes and master athletes of both genders. In addition to chronic back pain patients, it is equally important to conduct research on healthy athletes with a predisposition to spine problems. Investigators should focus their empirical work on identifying modifiable risk factors, predict which athletes are at risk for back problems, and develop personalized sport-specific assessment tools and targeted prevention strategies for them. This review was registered using the Open Science Framework Registries (https://osf.io/ha5n7).

2.
Front Physiol ; 13: 796097, 2022.
Article in English | MEDLINE | ID: mdl-35283763

ABSTRACT

Balance and core stabilization exercises have often been associated with improved athlete performance and/or decreased incidence of injuries. While these exercises seem to be efficient in the prevention of injuries, there is insufficient evidence regarding their role in sport-specific performance and related functional movements. The aim of this scoping review is (1) to map the literature that investigates whether currently available variables of postural and core stability are functionally related to athlete performance in sports with high demands on body balance and spinal posture and (2) to identify gaps in the literature and suggest further research on this topic. The literature search conducted on MEDLINE, Scopus, Web of Science, PubMed, and Cochrane Library databases was completed by Google Scholar, SpringerLink, and Elsevier. Altogether 21 articles met the inclusion criteria. Findings revealed that postural stability plays an important role in performance in archery, biathlon, gymnastics, shooting, and team sports (e.g., basketball, hockey, soccer, tennis). Also core stability and strength represent an integral part of athlete performance in sports based on lifting tasks and trunk rotations. Variables of these abilities are associated with performance-related skills in cricket, cycling, running, and team sports (e.g., baseball, football, hockey, netball, soccer, tennis). Better neuromuscular control of postural and core stability contribute to more efficient functional movements specific to particular sports. Training programs incorporating general and sport-specific exercises that involve the use of postural and core muscles showed an improvement of body balance, back muscle strength, and endurance. However, there is controversy about whether the improvement in these abilities is translated into athletic performance. There is still a lack of research investigating the relationship of body balance and stability of the core with sport-specific performance. In particular, corresponding variables should be better specified in relation to functional movements in sports with high demands on postural and core stability. Identifying the relationship of passive, active, and neural mechanisms underlying balance control and spinal posture with athlete performance would provide a basis for a multifaced approach in designing training and testing tools addressing postural and core stability in athletes under sport-specific conditions.

3.
BMJ Open ; 11(8): e050014, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446494

ABSTRACT

INTRODUCTION: Low back pain (LBP) is widely prevalent in healthcare workers. It is associated with impaired postural and core stability. So far, centre of pressure (CoP) measures have been commonly recorded through the use of a force plate in order to assess postural stability. However, this approach provides limited information about the centre of mass (CoM) movement in the lumbar region in individuals with LBP. Recent developments in sensor technology enable measurement of the trunk motion which could provide additional information on postural sway. However, the question remains as to whether CoM measures would be more sensitive in discriminating individuals with mild and moderate back pain than traditional CoP analyses. This study aims to investigate the sensitivity of CoP and CoM measures under varied stable, metastable and unstable testing conditions in healthcare workers, and their relationship with the level of subjective reported back pain. METHODS AND ANALYSIS: This is a cross-sectional controlled laboratory study. A group of 90 healthcare professionals will be recruited from rehabilitation centres within local areas. Participants will complete the Oswestry Disability Questionnaire. The primary outcome will be the rate of their back pain on the 0-10 Low Back Pain Scale (1-3 mild pain and 4-6 moderate pain). Secondary outcomes will include variables of postural and core stability testing during bipedal and one-legged stance on a force plate, a foam mat placed on the force plate, and a spring-supported platform with either eyes open or eyes closed. Both CoP using the posturography system based on a force plate and CoM using the inertial sensor system placed on the trunk will be simultaneously measured. ETHICS AND DISSEMINATION: Projects were approved by the ethics committee of the Faculty of Physical Education and Sport, Comenius University in Bratislava (Nos. 4/2017, 1/2020). Findings will be published in peer-reviewed journals and presented at conferences.


Subject(s)
Low Back Pain , Postural Balance , Cross-Sectional Studies , Health Personnel , Humans , Low Back Pain/diagnosis , Movement
4.
Article in English | MEDLINE | ID: mdl-34071122

ABSTRACT

Back pain is one of the most costly disorders among the worldwide working population. Within that population, healthcare workers are at a high risk of back pain. Though they often demonstrate awkward postures and impaired balance in comparison with healthy workers, there is no clear relationship between compensatory postural responses to unpredictable stimuli and the strength of related muscle groups, in particular in individuals with mild to moderate back pain. This paper presents a study protocol that aims to evaluate the relationship between peak anterior to peak posterior displacements of the center of pressure (CoP) and corresponding time from peak anterior to peak posterior displacements of the CoP after sudden external perturbations and peak force during a maximum voluntary isometric contraction of the back and hamstring muscles in physiotherapists with non-specific back pain in its early stages. Participants will complete the Oswestry Disability Questionnaire. Those that rate their back pain on the 0-10 Low Back Pain Scale in the ranges 1-3 (mild pain) and 4-6 (moderate pain) will be considered. They will undergo a perturbation-based balance test and a test of the maximal isometric strength of back muscles and hip extensors. We assume that by adding tests of reactive balance and strength of related muscle groups in the functional testing of physiotherapists, we would be able to identify back problems earlier and more efficiently and therefore address them well before chronic back disorders occur.


Subject(s)
Hamstring Muscles , Low Back Pain , Physical Therapists , Cross-Sectional Studies , Humans , Isometric Contraction , Muscle Strength , Muscle, Skeletal , Postural Balance
5.
Article in English | MEDLINE | ID: mdl-34070164

ABSTRACT

While competitive training is usually associated with the prevalence of back pain and injuries in athletes, little attention is being paid to the positive effects of sport-specific exercises on core musculature in the prevention of back problems. This scoping review aims (i) to map the literature that addresses the effects on reduction of back problems following athlete training with differing demands on the core musculature and (ii) to identify gaps in the existing literature and propose future research on this topic. The main literature search was conducted on the MEDLINE, PubMed, Web of Science, Scopus, and Cochrane Library databases and was completed on Elsevier, SpringerLink, and Google Scholar. A total of 21 research articles met the inclusion criteria. The findings of 17 studies identified that core strengthening and core stabilization exercises, alone or in combination with athlete training, contribute to the reduction of back pain in athletes, whereas only four studies revealed no significant association of core muscle strength and/or endurance with back problems. Nevertheless, more research is warranted to elucidate the pros and cons of purely sport-specific training with differing demands on the core musculature on back health in athletes. This could help us to design prevention strategies specifically tailored to individual athletes.


Subject(s)
Exercise Therapy , Sports , Athletes , Exercise , Humans , Muscle Strength
6.
Front Physiol ; 11: 894, 2020.
Article in English | MEDLINE | ID: mdl-32792989

ABSTRACT

The back is subjected to a great deal of strain in many sports. Up to 20% of all sports injuries involve an injury to the lower back or neck. Repetitive or high impact loads (e.g., running, gymnastics, skiing) and weight loading (e.g., weightlifting) affect the lower back. Rotation of the torso (e.g., golf, tennis) causes damage to both, the lumbar and thoracic spine. The cervical spine is most commonly injured in contact sports (e.g., boxing, football). One of the factors that increases the odds of injuries in athletes is excessive and rapid increases in training loads. In spite of currently emerging evidence on this issue, little is known about the balance between physiological loading on the spine and athletic performance, versus overloading and back pain and/or injury in athletes. This scoping review aims (i) to map the literature that addresses the association between the training load and the occurrence of back pain and/or injury, especially between the Acute:Chronic Workload Ratio (ACWR) and back problems in athletes of individual and team sports, and (ii) to identify gaps in existing literature and propose future research on this topic. A literature search of six electronic databases (i.e., MEDLINE, PubMed, Web of Science, SCOPUS, SportDiscus, and CINAHL) was conducted. A total of 48 research articles met the inclusion criteria. Findings identified that fatigue of the trunk muscles induced by excessive loading of the spine is one of the sources of back problems in athletes. In particular, high training volume and repetitive motions are responsible for the high prevalence rates. The most influential are biomechanical and physiological variations underlying the spine, though stress-related psychological factors should also be considered. However, limited evidence exists on the relationship between the ACWR and back pain or non-contact back injuries in athletes from individual and team sports. This may be due to insufficiently specified the acute and chronic time window that varies according to sport-specific schedule of competition and training. More research is therefore warranted to elucidate whether ACWR, among other factors, is able to identify workloads that could increase the risk of back problems in athletes.

SELECTION OF CITATIONS
SEARCH DETAIL
...