Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431937

ABSTRACT

The detailed knowledge about the structure of multinuclear paramagnetic lanthanide complexes for the targeted design of these compounds with special magnetic, sensory, optical and electronic properties is a very important task. At the same time, establishing the structure of such multinuclear paramagnetic lanthanide complexes in solution, using NMR is a difficult task, since several paramagnetic centers act simultaneously on the resulting chemical shift of a particular nucleus. In this paper, we have demonstrated the possibility of molecular structure determination in solution on the example of binuclear triple-decker lanthanide(III) complexes with tetra-15-crown-5-phthalocyanine Ln2[(15C5)4Pc]3 {where Ln = Tb (1) and Dy (2)} by quantitative analysis of the pseudo-contact lanthanide-induced shifts (LIS). The symmetry of complexes was used for the simplification of the calculation of pseudo-contact shifts on the base of the expression for the magnetic susceptibility tensor in the arbitrary oriented magnetic axis system. Good agreement between the calculated and experimental shifts in the 1H NMR spectra indicates the similarity of the structure for the complexes 1 and 2 in solution of CDCl3 and the structure in the crystalline phase, found from the data of the X-ray structural study of the similar complex Lu2[(15C5)4Pc]3. The described approach can be useful for LIS analysis of other polynuclear symmetric lanthanide complexes.


Subject(s)
Lanthanoid Series Elements , Magnetic Resonance Spectroscopy/methods , Lanthanoid Series Elements/chemistry , Molecular Structure , Magnetic Resonance Imaging , Magnetics
2.
J Incl Phenom Macrocycl Chem ; 102(1-2): 1-33, 2022.
Article in English | MEDLINE | ID: mdl-34785985

ABSTRACT

The paramagnetic lanthanide complexes with polyaminopolycarboxylate (PAPC) ligands attract considerable attention from the standpoint of potential applications thereof as relaxation agents used in medical magnetic resonance imaging (MRI) and in luminescent materials, as well as owing to promising use thereof as paramagnetic labels for studying the properties of biopolymers since they exhibit thermodynamic stability, good solubility in aqueous media and moderate toxicity. For the last decades, the NMR methods have been used to determine the physical and chemical properties of paramagnetic Ln compounds. The studies concerning paramagnetic NMR lanthanide-induced shifts (LISs) in dissolved Ln complexes, as well as the analysis of band shape as a function of temperature make it possible to obtain valuable information on the structure, intra- and intermolecular dynamics and paramagnetic properties thereof. This review is devoted solely to the following features: firstly, the processes of intramolecular dynamics of lanthanide complexes with polyamino-polycarboxylate ligands such as DOTA, EDTA and DTPA and their derivatives studied by NMR; secondly, the LISs of lanthanide complexes with EDTA, DOTA, DTPA and some of their derivatives depending on temperature and pH. Moreover, in this review, for the first time, the dependence of the activation energy of molecular dynamics in complexes with polydentate ligands on the atomic number of the lanthanide cation is analyzed and a monotonic change in energy is detected, which is due to the effect of lanthanide contraction. It should be noted that this phenomenon is quite general and may also appear in the future in many other series of lanthanide complexes with both other multidentate ligands and with bidentate and monodentate ligands. In the future, it is possible to predict the dependence of the properties of certain lanthanide complexes on the ionic radius of the lanthanide cation based on the approaches presented in the review. In this review, we have also presented the dynamic NMR as the main research method widely used to analyze the processes of molecular dynamics, and the structural studies based on the NMR relaxation spectroscopy and LIS analysis.

3.
Inorg Chem ; 52(9): 5564-9, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23587055

ABSTRACT

(1)H NMR measurements are reported for D2O solutions of paramagnetic complex [Er(H2O)(EDTA(4-))](-) (I) for temperature interval 273-319 K. Diamagnetic complex [Lu(H2O)(EDTA(4-))](-) (II) was used as an NMR reference compound. The spectra obtained have been analyzed using a band-shape analysis technique in the framework of dynamic NMR (DNMR) taking into account the temperature dependence of lanthanide-induced shifts. Intramolecular dynamics in I was assigned to the interconversion of Δ-λE-δδδδ and Δ-δE-δδδδ conformers with estimated activation free energy ΔG(‡)(298 K) = 50 ± 4 kJ/mol. The methodology of paramagnetic 4f-element probe applications on the example of Er(3+) for the study of free-energy changes in chemical exchange processes, as well as the advantages of this method in comparison with DNMR studies of diamagnetic substances, is discussed. In accordance with the literature reviewed, the fulfilled experimental study is the first example of intramolecular dynamics determination for erbium complexes. An additional advantage of the investigation is in the approach proposed which extends the range of measurement of the NMR rate constants for paramagnetic 4f-element complexes compared to diamagnetic ones. Coordination compounds investigated represent a new type of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...