Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34503232

ABSTRACT

Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30-40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.

2.
Cancer Res ; 78(24): 6866-6880, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30322862

ABSTRACT

: Targeted therapy changed the standard of care in ALK-dependent tumors. However, resistance remains a major challenge. Lorlatinib is a third-generation ALK inhibitor that inhibits most ALK mutants resistant to current ALK inhibitors. In this study, we utilize lorlatinib-resistant anaplastic large cell lymphoma (ALCL), non-small cell lung cancer (NSCLC), and neuroblastoma cell lines in vitro and in vivo to investigate the acquisition of resistance and its underlying mechanisms. ALCL cells acquired compound ALK mutations G1202R/G1269A and C1156F/L1198F in vitro at high drug concentrations. ALCL xenografts selected in vivo showed recurrent N1178H (5/10 mice) and G1269A (4/10 mice) mutations. Interestingly, intracellular localization of NPM/ALKN1178H skewed toward the cytoplasm in human cells, possibly mimicking overexpression. RNA sequencing of resistant cells showed significant alteration of PI3K/AKT and RAS/MAPK pathways. Functional validation by small-molecule inhibitors confirmed the involvement of these pathways in resistance to lorlatinib. NSCLC cells exposed in vitro to lorlatinib acquired hyperactivation of EGFR, which was blocked by erlotinib to restore sensitivity to lorlatinib. In neuroblastoma, whole-exome sequencing and proteomic profiling of lorlatinib-resistant cells revealed a truncating NF1 mutation and hyperactivation of EGFR and ErbB4. These data provide an extensive characterization of resistance mechanisms that may arise in different ALK-positive cancers following lorlatinib treatment. SIGNIFICANCE: High-throughput genomic, transcriptomic, and proteomic profiling reveals various mechanisms by which multiple tumor types acquire resistance to the third-generation ALK inhibitor lorlatinib.


Subject(s)
Anaplastic Lymphoma Kinase/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/drug therapy , Lymphoma, Large-Cell, Anaplastic/drug therapy , Aminopyridines , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Gene Expression Profiling , HEK293 Cells , Humans , Lactams , Mice , Microscopy, Fluorescence , Mutation , Neoplasm Transplantation , Neuroblastoma/drug therapy , Phosphorylation , Pyrazoles , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...