Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 10(4)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806157

ABSTRACT

Psychological stress activates catecholamine production, determines oxidation processes, and alters the lipid barrier functions in the skin. Scientific evidence associated with the detoxifying effect of fruits and vegetables, the growing awareness of the long-term issues related to the use of chemical-filled cosmetics, the aging of the population, and the increase in living standards are the factors responsible for the growth of food-derived ingredients in the cosmetics market. A Ficus carica cell suspension culture extract (FcHEx) was tested in vitro (on keratinocytes cells) and in vivo to evaluate its ability to manage the stress-hormone-induced damage in skin. The FcHEx reduced the epinephrine (-43% and -24% at the concentrations of 0.002% and 0.006%, respectively), interleukin 6 (-38% and -36% at the concentrations of 0.002% and 0.006%, respectively), lipid peroxide (-25%), and protein carbonylation (-50%) productions; FcHEx also induced ceramide synthesis (+150%) and ameliorated the lipid barrier performance. The in vivo experiments confirmed the in vitro test results. Transepidermal water loss (TEWL; -12.2%), sebum flow (-46.6% after two weeks and -73.8% after four weeks; on the forehead -56.4% after two weeks and -80.1% after four weeks), and skin lightness (+1.9% after two weeks and +2.7% after four weeks) defined the extract's effects on the skin barrier. The extract of the Ficus carica cell suspension cultures reduced the transepidermal water loss, the sebum production, the desquamation, and facial skin turning to a pale color from acute stress, suggesting its role as an ingredient to fight the signs of psychological stress in the skin.

2.
Phytother Res ; 35(1): 530-540, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32816329

ABSTRACT

Facial pore enlargement is considered a significant esthetic and health concern in skincare cosmetics. The pores fulfill the critical function of keeping the skin surface hydrated and protected against microbial infections. The hyperseborrhea, the stress factors, and the hormonal triggers can cause pore size enlargement, causing higher susceptibility of the skin to microbe aggressions and inflammatory reactions. Thus, reducing excessive sebum production and keeping functional pores are two of the most requested activities in skincare cosmetics. A Cirsium eriophorum cell culture extract was investigated for its role in sebum regulation, stratum corneum desquamation, and anti-inflammation. The extract was able to regulate essential markers associated with sebum secretion and pore enlargements, such as the enzyme 5α-reductase, which plays a central role in sebum production, and the trypsin-like serine protease Kallikrein 5, which promotes skin exfoliation and antimicrobial response. Moreover, the extract showed a sebum-normalizing and pore refining activity in individuals having seborrheic or acne-prone skins, suggesting a role of the C. eriophorum extract in rebalancing altered skin conditions responsible for pore enlargement.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cirsium/chemistry , Plant Extracts/pharmacology , Sebum/metabolism , Skin/drug effects , Acne Vulgaris , Adult , Cell Culture Techniques , Cosmetics , Face , Female , Fibroblasts/drug effects , HaCaT Cells , Humans , Inflammation , Male , Skin/metabolism , Skin Physiological Phenomena , Young Adult
3.
Mol Biotechnol ; 61(3): 209-220, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30661170

ABSTRACT

Ageing is a complex and progressive phenomenon, during which the accumulation of morphological and chemical changes seriously compromises the capacity of the cells to proliferate and fulfil their biological tasks. The increase in the average age of the world population, associated with a higher occurrence of age-related diseases, is prompting scientific research to look for new strategies and molecular targets that may help in alleviating age-related phenotypes. Growth factors, responsible for modulating several aging markers in many tissues and organs, represent valuable targets to fight age-associated dysfunctions. The growth differentiation factor GDF11, a TGF-ß family member, has been associated with the maintenance of youth phenotypes in different human tissues and organs, and in the skin has been related to an inhibition of the inflammatory response. We investigated the role of GDF11 in skin dermal fibroblasts, and we observed that its expression and activity were reduced in fibroblasts deriving from adult donors compared to neonatal ones. The main effect of GDF11 was the induction of collagen I and III, in both neonatal and adult fibroblasts, by triggering Smad signalling in a TGF-ß-like fashion. Moreover, by analysing a number of plant extracts having GDF11 inducing activity, we found that a peptide/sugar preparation, obtained from Lotus japonicus somatic embryo cultures, was capable of restoring GDF11 expression in older fibroblasts and to activate the synthesis of collagen I, collagen III and periostin, an important protein involved in collagen assembly.


Subject(s)
Aging/genetics , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/genetics , Growth Differentiation Factors/metabolism , Lotus/chemistry , Plant Extracts/pharmacology , Skin/metabolism , Adult , Aging/metabolism , Cells, Cultured , Collagen Type I/metabolism , Collagen Type III/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Humans , Infant, Newborn , Peptides/pharmacology , Signal Transduction/drug effects , Skin/cytology , Skin/drug effects , Smad Proteins/metabolism , Sugars/pharmacology
4.
J Cosmet Dermatol ; 17(2): 246-257, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28670794

ABSTRACT

BACKGROUND: Skin whitening products, used for ages by Asian people for cultural and esthetic purposes, are very popular nowadays in Western countries as well, where the need to inhibit skin spots after sun exposure has become not only a cosmetic but also a health-related issue. Thus, the development of effective and safe depigmenting agents derived from natural products gets continuous attention by cosmetic brands and consumers. OBJECTIVES: The aim of this study was to determine the effects of two preparations, obtained from the hairy root cultures of the species Brassica rapa, on melanogenesis and the expression of the extracellular matrix proteins involved in a correct pigment distribution. METHODS: The two preparations, obtained by water-ethanol extraction and by digestion of cell-wall glycoproteins of the root cells, were chemically characterized and tested on skin cell cultures and on human skin explants to investigate on their dermatological activities. RESULTS: Both the extracts were able to decrease melanin synthesis pathway in melanocytes and modulate the expression of genes involved in melanin distribution. One of the extracts was also effective in inducing the expression of laminin-5 and collagen IV, involved into the maintenance of tissue integrity. The two extracts, when tested together on human skin explants, demonstrated a good synergic hypopigmenting activity. CONCLUSIONS: Taken together, the results indicate that the extracts from B. rapa root cultures can be employed as cosmetic active ingredients in skin whitening products and as potential therapeutic agents for treating pigmentation disorders.


Subject(s)
Brassica rapa , Melanins/biosynthesis , Plant Extracts/pharmacology , Skin Lightening Preparations/pharmacology , Skin Pigmentation/drug effects , Skin/drug effects , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Collagen Type IV/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Humans , Keratinocytes/metabolism , Laminin/metabolism , Melanins/metabolism , Melanocytes/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Plant Roots , Protein Biosynthesis/drug effects , Kalinin
5.
J Biol Chem ; 287(11): 8327-35, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22267735

ABSTRACT

Galectin-8 (Gal8) interacts with ß-galactoside-containing glycoproteins and has recently been implicated to play a role in platelet activation. It has been suggested that Gal8 may also interact with platelet coagulation factor V (FV). This indispensable cofactor is stored in α-granules of platelets via a poorly understood endocytic mechanism that only exists in megakaryocytes (platelet precursor cells). In this study, we now assessed the putative role of Gal8 for FV biology. Surface plasmon resonance analysis and a solid phase binding assay revealed that Gal8 binds FV. The data further show that ß-galactosides block the interaction between FV and Gal8. These findings indicate that Gal8 specifically interacts with FV in a carbohydrate-dependent manner. Confocal microscopy studies and flow cytometry analysis demonstrated that megakaryocytic DAMI cells internalize FV. Flow cytometry showed that these cells express Gal8 on their cell surface. Reducing the functional presence of Gal8 on the cells either by an anti-Gal8 antibody or by siRNA technology markedly impaired the endocytic uptake of FV. Compatible with the apparent role of Gal8 for FV uptake, endocytosis of FV was also affected in the presence of ß-galactosides. Strikingly, thrombopoietin-differentiated DAMI cells, which represent a more mature megakaryocytic state, not only lose the capacity to express cell-surface bound Gal8 but also lose the ability to internalize FV. Collectively, our data reveal a novel role for the tandem repeat Gal8 in promoting FV endocytosis.


Subject(s)
Endocytosis/physiology , Factor V/metabolism , Galectins/metabolism , Megakaryocytes/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Cell Membrane/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/physiology , Humans , Protein Binding/physiology , Thrombopoietin/pharmacology
6.
J Biomed Biotechnol ; 2010: 801726, 2010.
Article in English | MEDLINE | ID: mdl-20625417

ABSTRACT

Diclofenac, a nonsteroidal anti-inflammatory drug, induces apoptosis on the neuroblastoma cell line SH-SY5Y through a mitochondrial dysfunction, affecting some antioxidant mechanisms. Indeed, the time- and dose-dependent increase of apoptosis is associated to an early enhancement of the reactive oxygen species (ROS). Mitochondrial superoxide dismutase (SOD2) plays a crucial role in the defence against ROS, thus protecting against several apoptotic stimuli. Diclofenac decreased the protein levels and the enzymatic activity of SOD2, without any significant impairment of the corresponding mRNA levels in the SH-SY5Y extracts. When cells were incubated with an archaeal exogenous thioredoxin, an attenuation of the diclofenac-induced apoptosis was observed, together with an increase of SOD2 protein levels. Furthermore, diclofenac impaired the mitochondrial membrane potential, leading to a release of cytochrome c. These data suggest that mitochondria are involved in the diclofenac-induced apoptosis of SH-SY5Y cells and point to a possible role of SOD2 in this process.


Subject(s)
Apoptosis/drug effects , Diclofenac/pharmacology , Mitochondria/drug effects , Mitochondria/enzymology , Neuroblastoma/pathology , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Cell Line, Tumor , Cytochromes c/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Membrane Potential, Mitochondrial/drug effects , Neuroblastoma/enzymology , Neuroblastoma/genetics , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism , Superoxide Dismutase/genetics , Thioredoxins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...