Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Intensive Care ; 14(1): 110, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980557

ABSTRACT

BACKGROUND: Although the present diagnosis of acute kidney injury (AKI) involves measurement of acute increases in serum creatinine (SC) and reduced urine output (UO), measurement of UO is underutilized for diagnosis of AKI in clinical practice. The purpose of this investigation was to conduct a systematic literature review of published studies that evaluate both UO and SC in the detection of AKI to better understand incidence, healthcare resource use, and mortality in relation to these diagnostic measures and how these outcomes may vary by population subtype. METHODS: The systematic literature review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. Data were extracted from comparative studies focused on the diagnostic accuracy of UO and SC, relevant clinical outcomes, and resource usage. Quality and validity were assessed using the National Institute for Health and Care Excellence (NICE) single technology appraisal quality checklist for randomized controlled trials and the Newcastle-Ottawa Quality Assessment Scale for observational studies. RESULTS: A total of 1729 publications were screened, with 50 studies eligible for inclusion. A majority of studies (76%) used the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to classify AKI and focused on the comparison of UO alone versus SC alone, while few studies analyzed a diagnosis of AKI based on the presence of both UO and SC, or the presence of at least one of UO or SC indicators. Of the included studies, 33% analyzed patients treated for cardiovascular diseases and 30% analyzed patients treated in a general intensive care unit. The use of UO criteria was more often associated with increased incidence of AKI (36%), than was the application of SC criteria (21%), which was consistent across the subgroup analyses performed. Furthermore, the use of UO criteria was associated with an earlier diagnosis of AKI (2.4-46.0 h). Both diagnostic modalities accurately predicted risk of AKI-related mortality. CONCLUSIONS: Evidence suggests that the inclusion of UO criteria provides substantial diagnostic and prognostic value to the detection of AKI.

2.
BMC Biochem ; 19(1): 8, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115012

ABSTRACT

BACKGROUND: Stilbene cleaving oxygenases (SCOs), also known as lignostilbene-α,ß-dioxygenases (LSDs) mediate the oxidative cleavage of the olefinic double bonds of lignin-derived intermediate phenolic stilbenes, yielding small modified benzaldehyde compounds. SCOs represent one branch of the larger carotenoid cleavage oxygenases family. Here, we describe the structural and functional characterization of an SCO-like enzyme from the soil-born, bio-control agent Pseudomonas brassicacearum. METHODS: In vitro and in vivo assays relying on visual inspection, spectrophotometric quantification, as well as liquid-chormatographic and mass spectrometric characterization were applied for functional evaluation of the enzyme. X-ray crystallographic analyses and in silico modeling were applied for structural investigations. RESULTS: In vitro assays demonstrated preferential cleavage of resveratrol, while in vivo analyses detected putative cleavage of the straight chain carotenoid, lycopene. A high-resolution structure containing the seven-bladed ß-propeller fold and conserved 4-His-Fe unit at the catalytic site, was obtained. Comparative structural alignments, as well as in silico modelling and docking, highlight potential molecular factors contributing to both the primary in vitro activity against resveratrol, as well as the putative subsidiary activities against carotenoids in vivo, for future validation. CONCLUSIONS: The findings reported here provide validation of the SCO structure, and highlight enigmatic points with respect to the potential effect of the enzyme's molecular environment on substrate specificities for future investigation.


Subject(s)
Dioxygenases/chemistry , Dioxygenases/metabolism , Pseudomonas/enzymology , Crystallography, X-Ray , Dioxygenases/classification , Molecular Docking Simulation , Phylogeny , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Reproducibility of Results , Soil Microbiology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...