Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 283: 111989, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33516097

ABSTRACT

Experimental and computational investigations have been conducted in this study to assess the influence of municipal waste pyrolyzed biochar impregnated clay composites on antibiotic removal as a material for wastewater treatment and simultaneous value-addition for waste. The surface potential (zeta potential) of the pristine biochar and composite samples are found to be within the range ~10 to ~ -40 mV in the pH range 2-10. The presence of different inorganic salt solutions influences the electrophoretic mobility of the dispersed phase in a suspension, as well as its zeta potential. In addition of Na+ salt solutions, the Na+ ions undergo electrostatic interaction with the negatively charged biochar samples and form a double layer at the interface of biochar and ionic salt solution. Molecular dynamics simulations have been employed to understand experimental findings, ions adsorption and solute-solvent interactions at the molecular level of two biochar B7 (seven benzene rings, one methoxy, one aldehyde and two hydroxyls groups) and B17 (seventeen benzene rings, one methoxy, two hydroxyls and two carboxylic acid groups) in salts aqueous solutions. The results confirm that hydroxyls and carboxylate groups of biochar are responsible for solute-solvent interactions. Successful removal of tetracycline antibiotics is observed with 26 mg/g maximum adsorption capacity with montmorillonite biochar composite. This study confirms that interactions between amide and hydroxyl groups of tetracycline with hydroxyl and carboxylate groups of biochar play the key role in the adsorption process. The solution pH and presence of different background electrolytes effectively influence the process of solute-solvent interactions as well as adsorption efficacy towards tetracycline adsorption.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Anti-Bacterial Agents , Charcoal , Clay , Hydrogen-Ion Concentration , Ions , Kinetics , Solvents , Tetracycline/analysis , Water Pollutants, Chemical/analysis
2.
Molecules ; 27(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35011351

ABSTRACT

The effect of aqueous solutions of selected ionic liquids solutions on Ideonella sakaiensis PETase with bis(2-hydroxyethyl) terephthalate (BHET) substrate were studied by means of molecular dynamics simulations in order to identify the possible effect of ionic liquids on the structure and dynamics of enzymatic Polyethylene terephthalate (PET) hydrolysis. The use of specific ionic liquids can potentially enhance the enzymatic hydrolyses of PET where these ionic liquids are known to partially dissolve PET. The aqueous solution of cholinium phosphate were found to have the smallest effect of the structure of PETase, and its interaction with (BHET) as substrate was comparable to that with the pure water. Thus, the cholinium phosphate was identified as possible candidate as ionic liquid co-solvent to study the enzymatic hydrolyses of PET.


Subject(s)
Burkholderiales/enzymology , Hydrolases/metabolism , Ionic Liquids/chemistry , Polyethylene Terephthalates/chemistry , Hydrogen Bonding , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Phthalic Acids/chemistry , Protein Conformation , Solvents/chemistry
3.
Chirality ; 29(10): 634-647, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28810058

ABSTRACT

Computing the optical rotation of organic molecules can be a real challenge, and various theoretical approaches have been developed in this regard. A benchmark study of optical rotation of various classes of compounds was carried out by Density Functional Theory (DFT) methods. The aim of the present research study was to find out the best-suited functional and basis set to estimate the optical rotations of selected compounds with respect to experimental literature values. Six DFT functional LSDA, BVP86, CAM-B3LYP, B3PW91, and PBE were applied on 22 different compounds. Furthermore, six different basis sets, i.e., 3-21G, 6-31G, aug-cc-pVDZ, aug-cc-pVTZ, DGDZVP, and DGDZVP2 were also applied with the best-suited functional B3LYP. After rigorous effort, it can be safely said that the best combination of functional and basis set is B3LYP/aug-cc-pVTZ for the estimation of optical rotation for selected compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...