Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 155(15): 154502, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34686053

ABSTRACT

Water diffusion through membrane proteins is a key aspect of cellular function. Essential processes of cellular metabolism are driven by osmotic pressure, which depends on water channels. Membrane proteins such as aquaporins (AQPs) are responsible for enabling water permeation through the cell membrane. AQPs are highly selective, allowing only water and relatively small polar molecules to cross the membrane. Experimentally, estimation of water flux through membrane proteins is still a challenge, and hence, accurate simulations of water permeation are of particular importance. We present a numerical study of water diffusion through AQP1 comparing three water models: TIP3P, OPC, and TIP4P/2005. Bulk diffusion, diffusion permeability, and osmotic permeability are computed and compared among all models. The results show that there are significant differences between TIP3P (a particularly widespread model for simulations of biological systems) and the more recently developed TIP4P/2005 and OPC models. We demonstrate that OPC and TIP4P/2005 reproduce protein-water interactions and dynamics in very good agreement with experimental data. From this study, we find that the choice of the water model has a significant effect on the computed water dynamics as well as its molecular behavior within a biological nanopore.


Subject(s)
Aquaporin 1/metabolism , Models, Biological , Water/metabolism , Diffusion , Humans , Permeability
2.
J Chem Phys ; 152(19): 194501, 2020 May 21.
Article in English | MEDLINE | ID: mdl-33687252

ABSTRACT

Adding salt to water at ambient pressure affects its thermodynamic properties. At low salt concentration, anomalies such as the density maximum are shifted to lower temperature, while at large enough salt concentration, they cannot be observed any more. Here, we investigate the effect of salt on an anomaly recently observed in pure water at negative pressure: the existence of a sound velocity minimum along isochores. We compare experiments and simulations for an aqueous solution of sodium chloride with molality around 1.2 mol kg-1, reaching pressures beyond -100 MPa. We also discuss the origin of the minima in the sound velocity and emphasize the importance of the relative position of the temperatures of sound velocity and density anomalies.

3.
J Phys Condens Matter ; 30(17): 174002, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29508769

ABSTRACT

We investigate with computer simulations the effect of applying an electric field on the water-to-ice transition. We use a combination of state-of-the-art simulation techniques to obtain phase boundaries and crystal growth rates (direct coexistence), nucleation rates (seeding) and interfacial free energies (seeding and mold integration). First, we consider ice Ih, the most stable polymorph in the absence of a field. Its normal melting temperature, speed of crystal growth and nucleation rate (for a given supercooling) diminish as the intensity of the field goes up. Then, we study polarised cubic ice, or ice Icf, the most stable solid phase under a strong electric field. Its normal melting point goes up with the field and, for a given supercooling, under the studied field (0.3 V nm-1) ice Icf nucleates and grows at a similar rate as Ih with no field. The net effect of the field would then be that ice nucleates at warmer temperatures, but in the form of ice Icf. The main conclusion of this work is that reasonable electric fields (not strong enough to break water molecules apart) are not relevant in the context of homogeneous ice nucleation at 1 bar.

4.
Phys Rev Lett ; 117(13): 135702, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27715079

ABSTRACT

The avoidance of water freezing is the holy grail in the cryopreservation of biological samples, food, and organs. Fast cooling rates are used to beat ice nucleation and avoid cell damage. This strategy can be enhanced by applying high pressures to decrease the nucleation rate, but the physics behind this procedure has not been fully understood yet. We perform computer experiments to investigate ice nucleation at high pressures consisting in embedding ice seeds in supercooled water. We find that the slowing down of the nucleation rate is mainly due to an increase of the ice I-water interfacial free energy with pressure. Our work also clarifies the molecular mechanism of ice nucleation for a wide pressure range. This study is not only relevant to cryopreservation, but also to water amorphization and climate change modeling.

5.
J Chem Phys ; 143(13): 134504, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26450320

ABSTRACT

The role of cubic ice, ice Ic, in the nucleation of ice from supercooled water has been widely debated in the past decade. Computer simulations can provide insightful information about the mechanism of ice nucleation at a molecular scale. In this work, we use molecular dynamics to study the competition between ice Ic and hexagonal ice, ice Ih, in the process of ice nucleation. Using a seeding approach, in which classical nucleation theory is combined with simulations of ice clusters embedded in supercooled water, we estimate the nucleation rate of ice for a pathway in which the critical nucleus has an Ic structure. Comparing our results with those previously obtained for ice Ih [Sanz et al., J. Am. Chem. Soc. 135, 15008 (2013)], we conclude that within the accuracy of our calculations both nucleation pathways have the same rate for the studied water models (TIP4P/Ice and TIP4P/2005). We examine in detail the factors that contribute to the nucleation rate and find that the chemical potential difference with the fluid, the attachment rate of particles to the cluster, and the ice-water interfacial free energy are the same within the estimated margin of error for both ice polymorphs. Furthermore, we study the morphology of the ice clusters and conclude that they have a spherical shape.

SELECTION OF CITATIONS
SEARCH DETAIL
...