Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RNA Biol ; 15(8): 1119-1132, 2018.
Article in English | MEDLINE | ID: mdl-30175688

ABSTRACT

Prokaryotic genomes show a high level of information compaction often with different molecules transcribed from the same locus. Although antisense RNAs have been relatively well studied, RNAs in the same strand, internal RNAs (intraRNAs), are still poorly understood. The question of how common is the translation of overlapping reading frames remains open. We address this question in the model archaeon Halobacterium salinarum. In the present work we used differential RNA-seq (dRNA-seq) in H. salinarum NRC-1 to locate intraRNA signals in subsets of internal transcription start sites (iTSS) and establish the open reading frames associated to them (intraORFs). Using C-terminally flagged proteins, we experimentally observed isoforms accurately predicted by intraRNA translation for kef1, acs3 and orc4 genes. We also recovered from the literature and mass spectrometry databases several instances of protein isoforms consistent with intraRNA translation such as the gas vesicle protein gene gvpC1. We found evidence for intraRNAs in horizontally transferred genes such as the chaperone dnaK and the aerobic respiration related cydA in both H. salinarum and Escherichia coli. Also, intraRNA translation evidence in H. salinarum, E. coli and yeast of a universal elongation factor (aEF-2, fusA and eEF-2) suggests that this is an ancient phenomenon present in all domains of life.


Subject(s)
Alternative Splicing , Archaeal Proteins/metabolism , Genome, Archaeal , Halobacterium salinarum/metabolism , Open Reading Frames , RNA, Antisense/genetics , RNA, Archaeal/genetics , Archaeal Proteins/genetics , Base Sequence , Gene Expression Profiling , Halobacterium salinarum/genetics , Halobacterium salinarum/growth & development , High-Throughput Nucleotide Sequencing , Transcription Initiation Site
2.
PLoS One ; 10(6): e0129215, 2015.
Article in English | MEDLINE | ID: mdl-26061363

ABSTRACT

Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i) the E. coli's specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii) the resistance marker and (iii) the replication origin, which are specific to H. salinarum and (iv) the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.


Subject(s)
Genetic Engineering/methods , Genetic Vectors/genetics , Halobacterium salinarum/genetics , Cloning, Molecular/methods , DNA, Archaeal , Genome Size , Models, Genetic
3.
RNA Biol ; 12(5): 490-500, 2015.
Article in English | MEDLINE | ID: mdl-25806405

ABSTRACT

The existence of sense overlapping transcripts that share regulatory and coding information in the same genomic sequence shows an additional level of prokaryotic gene expression complexity. Here we report the discovery of ncRNAs associated with IS1341-type transposase (tnpB) genes, at the 3'-end of such elements, with examples in archaea and bacteria. Focusing on the model haloarchaeon Halobacterium salinarum NRC-1, we show the existence of sense overlapping transcripts (sotRNAs) for all its IS1341-type transposases. Publicly available transcriptome compendium show condition-dependent differential regulation between sotRNAs and their cognate genes. These sotRNAs allowed us to find a UUCA tetraloop motif that is present in other archaea (ncRNA family HgcC) and in a H. salinarum intergenic ncRNA derived from a palindrome associated transposable elements (PATE). Overexpression of one sotRNA and the PATE-derived RNA harboring the tetraloop motif improved H. salinarum growth, indicating that these ncRNAs are functional.


Subject(s)
Genes, Archaeal , Halobacterium salinarum/genetics , RNA, Untranslated/genetics , Transposases/genetics , Base Sequence , Gene Expression Profiling , Halobacterium salinarum/growth & development , Molecular Sequence Data , Nucleotide Motifs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retroelements/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...