Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Methods Clin Dev ; 3: 16036, 2016.
Article in English | MEDLINE | ID: mdl-27331076

ABSTRACT

The reversibility of neuropathic lysosomal storage diseases, including MPS IIIA, is a major goal in therapeutic development, due to typically late diagnoses and a large population of untreated patients. We used self-complementary adeno-associated virus (scAAV) serotype 9 vector expressing human N-sulfoglucosamine sulfohydrolase (SGSH) to test the efficacy of treatment at later stages of the disease. We treated MPS IIIA mice at 1, 2, 3, 6, and 9 months of age with an intravenous injection of scAAV9-U1a-hSGSH vector, leading to restoration of SGSH activity and reduction of glycosaminoglycans (GAG) throughout the central nervous system (CNS) and somatic tissues at a dose of 5E12 vg/kg. Treatment up to 3 months age improved learning ability in the Morris water maze at 7.5 months, and lifespan was normalized. In mice treated at 6 months age, behavioral performance was impaired at 7.5 months, but did not decline further when retested at 12 months, and lifespan was increased, but not normalized. Treatment at 9 months did not increase life-span, though the GAG storage pathology in the CNS was improved. The study suggests that there is potential for gene therapy intervention in MPS IIIA at intermediate stages of the disease, and extends the clinical relevance of our systemic scAAV9-hSGSH gene delivery approach.

2.
Hum Gene Ther Clin Dev ; 26(4): 228-42, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26684447

ABSTRACT

No treatment is currently available for mucopolysaccharidosis (MPS) IIIB, a neuropathic lysosomal storage disease due to defect in α-N-acetylglucosaminidase (NAGLU). In preparation for a clinical trial, we performed an IND-enabling GLP-toxicology study to assess systemic rAAV9-CMV-hNAGLU gene delivery in WT C57BL/6 mice at 1 × 10(14) vg/kg and 2 × 10(14) vg/kg (n = 30/group, M:F = 1:1), and non-GLP testing in MPS IIIB mice at 2 × 10(14) vg/kg. Importantly, no adverse clinical signs or chronic toxicity were observed through the 6 month study duration. The rAAV9-mediated rNAGLU expression was rapid and persistent in virtually all tested CNS and somatic tissues. However, acute liver toxicity occurred in 33% (5/15) WT males in the 2 × 10(14) vg/kg cohort, which was dose-dependent, sex-associated, and genotype-specific, likely due to hepatic rNAGLU overexpression. Interestingly, a significant dose response was observed only in the brain and spinal cord, whereas in the liver at 24 weeks postinfection (pi), NAGLU activity was reduced to endogenous levels in the high dose cohort but remained at supranormal levels in the low dose group. The possibility of rAAV9 germline transmission appears to be minimal. The vector delivery resulted in transient T-cell responses and characteristic acute antibody responses to both AAV9 and rNAGLU in all rAAV9-treated animals, with no detectable impacts on tissue transgene expression. This study demonstrates a generally safe and effective profile, and may have identified the upper dosing limit of rAAV9-CMV-hNAGLU via systemic delivery for the treatment of MPS IIIB.


Subject(s)
Brain/metabolism , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Liver/metabolism , Mucopolysaccharidosis III/therapy , Practice Guidelines as Topic , Spinal Cord/metabolism , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Animals , Dependovirus/genetics , Dependovirus/metabolism , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Male , Mice , Mice, Inbred C57BL , Organ Specificity
3.
Mol Ther ; 23(4): 638-47, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25592334

ABSTRACT

Mucopolysaccharidosis (MPS) IIIA is a neuropathic lysosomal storage disease caused by deficiency in N-sulfoglucosamine sulfohydrolase (SGSH). Genome-wide gene expression microarrays in MPS IIIA mice detected broad molecular abnormalities (greater than or equal to twofold, false discovery rate ≤10) in numerous transcripts (314) in the brain and blood (397). Importantly, 22 dysregulated blood transcripts are known to be enriched in the brain and linked to broad neuronal functions. To target the root cause, we used a self-complementary AAVrh74 vector to deliver the human SGSH gene into 4-6 weeks old MPS IIIA mice by an intravenous injection. The treatment resulted in global central nervous system (CNS) and widespread somatic restoration of SGSH activity, clearance of CNS and somatic glycosaminoglycan storage, improved behavior performance, and significantly extended survival. The scAAVrh74-hSGSH treatment also led to the correction of the majority of the transcriptional abnormalities in the brain (95.9%) and blood (97.7%), of which 182 and 290 transcripts were normalized in the brain and blood, respectively. These results demonstrate that a single systemic scAAVrh74-hSGSH delivery mediated efficient restoration of SGSH activity and resulted in a near complete correction of MPS IIIA molecular pathology. This study also demonstrates that blood transcriptional profiles reflect the biopathological status of MPS IIIA, and also respond well to effective treatments.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Hydrolases/genetics , Mucopolysaccharidosis III/therapy , Animals , Genetic Therapy , Humans , Mice , Mice, Inbred C57BL
4.
Mol Ther ; 20(11): 2098-110, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22990674

ABSTRACT

Recombinant adeno-associated virus (rAAV) vectors have gained an extensive record of safety and efficacy in animal models of human disease. Infrequent reports of genotoxicity have been limited to specific vectors associated with excess hepatocellular carcinomas (HCC) in mice. In order to understand potential mechanisms of genotoxicity, and identify patterns of insertion that could promote tumor formation, we compared a self-complementary AAV (scAAV) vector designed to promote insertional activation (scAAV-CBA-null) to a conventional scAAV-CMV-GFP vector. HCC-prone C3H/HeJ mice and severe combined immunodeficiency (SCID) mice were infected with vector plus secondary treatments including partial hepatectomy (HPX) and camptothecin (CPT) to determine the effects of cell cycling and DNA damage on tumor incidence. Infection with either vector led to a significant increase in HCC incidence in male C3H/HeJ mice. Partial HPX after infection reduced HCC incidence in the cytomegalovirus-green fluorescent protein (CMV-GFP)-infected mice, but not in the cognate chicken ß-actin (CBA)-null infected group. Tumors from CBA-null infected, hepatectomized mice were more likely to contain significant levels of vector DNA than tumors from the corresponding CMV-GFP-infected group. Most CBA-null vector insertions recovered from tumors were associated with known proto-oncogenes or tumor suppressors. Specific patterns of insertion suggested read-through transcription, enhancer effects, and disruption of tumor suppressors as likely mechanisms for genotoxicity.


Subject(s)
Carcinoma, Hepatocellular/virology , Dependovirus/genetics , Liver Neoplasms, Experimental/virology , Mutagenesis, Insertional , Virus Integration , Animals , Base Sequence , Camptothecin , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , DNA Damage , Dependovirus/physiology , Female , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 3/genetics , Genetic Vectors , Genome, Viral , Hepatectomy , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/genetics , Male , Mice , Mice, Inbred C3H , Mice, SCID , Molecular Sequence Data , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogenes , SOS1 Protein/genetics , Transcriptional Activation
5.
Mol Ther ; 19(6): 1025-33, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21386820

ABSTRACT

The greatest challenge in developing therapies for mucopolysaccharidosis (MPS) IIIB is to achieve efficient central nervous system (CNS) delivery across the blood-brain barrier (BBB). In this study, we used the novel ability of adeno-associated virus serotype 9 (AAV9) to cross the BBB from the vasculature to achieve long-term global CNS, and widespread somatic restoration of α-N-acetylglucosaminidase (NAGLU) activity. A single intravenous (IV) injection of rAAV9-CMV-hNAGLU, without extraneous treatment to disrupt the BBB, restored NAGLU activity to normal or above normal levels in adult MPS IIIB mice, leading to the correction of lysosomal storage pathology in the CNS and periphery, and correction of astrocytosis and neurodegeneration. The IV delivered rAAV9 vector also transduced abundant neurons in the myenteric and submucosal plexus, suggesting peripheral nervous system (PNS) targeting. While CNS entry did not depend on osmotic disruption of the BBB, it was significantly enhanced by pretreatment with an IV infusion of mannitol. Most important, we demonstrate that a single systemic rAAV9-NAGLU gene delivery provides long-term (>18 months) neurological benefits in MPS IIIB mice, resulting in significant improvement in behavioral performance, and extension of survival. These data suggest promising clinical potential using the trans-BBB neurotropic rAAV9 vector for treating MPS IIIB and other neurogenetic diseases.


Subject(s)
Acetylglucosaminidase/metabolism , Blood-Brain Barrier/metabolism , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Mucopolysaccharidosis III/therapy , Nervous System Diseases/therapy , Acetylglucosaminidase/genetics , Animals , Mice , Mice, Knockout , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...