Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 107(5): 726-734, 2020 05.
Article in English | MEDLINE | ID: mdl-32346866

ABSTRACT

PREMISE: Of all orchid species described, 70% live on phorophytes. Trees offer a vital space with characteristics that influence the successful establishment and life cycle of orchids. Field inventory and distribution analysis suggest that phorophyte selection is biased to certain tree species that would serve as better hosts. Phorophyte bark is known as an important factor that influences this preference, but the chemical and physical properties of bark that contribute to creating a favorable space for orchids are still poorly understood. In this work, the effect of bark physical characteristics on phorophyte preference of tropical orchids was studied. METHODS: Orchids and their phorophytes were counted and identified along transects inside two natural reserves in Southeast Mexico. A rhytidome classification was used to describe the bark decoration patterns of the phorophytes. To quantify bark fissuring, we developed a new protocol based on image processing of light micrographs using free-access software. Bark topology characterization was complemented with scanning electronic microscopy. Maximum and minimum water content was also determined. RESULTS: Analyses of bark decorations and bark fissuring were not enough to explain the preference found for some tropical trees. In contrast, a positive relationship was found among water-storage capacity, bark porosity, and phorophyte preference. The host trees preferred by most orchids have bark with higher pore density and higher water retention after draining. CONCLUSIONS: Unexpectedly, the phorophytes preferred by orchids are not those with more fissured bark but those with a higher ability to retain minimum water content after draining, which is a bark property positively correlated with higher pore density. Our data indicate that the bark microenvironment, determined by topology and water storage capacity, has a pivotal role in phorophyte specificity, a key factor that affects orchid diversity and distribution in the world.


Subject(s)
Orchidaceae , Trees , Mexico , Plant Bark , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...