Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(6): e0269729, 2022.
Article in English | MEDLINE | ID: mdl-35737689

ABSTRACT

Deforestation continues at rapid rates despite global conservation efforts. Evidence suggests that governance may play a critical role in influencing deforestation, and while a number of studies have demonstrated a clear relationship between national-level governance and deforestation, much remains to be known about the relative importance of subnational governance to deforestation outcomes. With a focus on the Brazilian Amazon, this study aims to understand the relationship between governance and deforestation at the municipal level. Drawing on the World Bank Worldwide Governance Indicators (WGI) as a guiding conceptual framework, and incorporating the additional dimension of environmental governance, we identified a wide array of publicly available data sources related to governance indicators that we used to select relevant governance variables. We compiled a dataset of 22 municipal-level governance variables covering the 2005-2018 period for 457 municipalities in the Brazilian Amazon. Using an econometric approach, we tested the relationship between governance variables and deforestation rates in a fixed-effects panel regression analysis. We found that municipalities with increasing numbers of agricultural companies tended to have higher rates of deforestation, municipalities with an environmental fund tended to have lower rates of deforestation, and municipalities that had previously elected a female mayor tended to have lower rates of deforestation. These results add to the wider conversation on the role of local-level governance, revealing that certain governance variables may contribute to halting deforestation in the Brazilian Amazon.


Subject(s)
Conservation of Natural Resources , Environmental Policy , Agriculture , Brazil , Cities , Conservation of Natural Resources/methods , Female , Humans
2.
Glob Chang Biol ; 25(6): 2112-2126, 2019 06.
Article in English | MEDLINE | ID: mdl-30854741

ABSTRACT

The interactions between climate and land-use change are dictating the distribution of flora and fauna and reshuffling biotic community composition around the world. Tropical mountains are particularly sensitive because they often have a high human population density, a long history of agriculture, range-restricted species, and high-beta diversity due to a steep elevation gradient. Here we evaluated the change in distribution of woody vegetation in the tropical Andes of South America for the period 2001-2014. For the analyses we created annual land-cover/land-use maps using MODIS satellite data at 250 m pixel resolution, calculated the cover of woody vegetation (trees and shrubs) in 9,274 hexagons of 115.47 km2 , and then determined if there was a statistically significant (p < 0.05) 14 year linear trend (positive-forest gain, negative-forest loss) within each hexagon. Of the 1,308 hexagons with significant trends, 36.6% (n = 479) lost forests and 63.4% (n = 829) gained forests. We estimated an overall net gain of ~500,000 ha in woody vegetation. Forest loss dominated the 1,000-1,499 m elevation zone and forest gain dominated above 1,500 m. The most important transitions were forest loss at lower elevations for pastures and croplands, forest gain in abandoned pastures and cropland in mid-elevation areas, and shrub encroachment into highland grasslands. Expert validation confirmed the observed trends, but some areas of apparent forest gain were associated with new shade coffee, pine, or eucalypt plantations. In addition, after controlling for elevation and country, forest gain was associated with a decline in the rural population. Although we document an overall gain in forest cover, the recent reversal of forest gains in Colombia demonstrates that these coupled natural-human systems are highly dynamic and there is an urgent need of a regional real-time land-use, biodiversity, and ecosystem services monitoring network.


Subject(s)
Forests , Trees , Biodiversity , Colombia , Ecosystem , Satellite Imagery , South America , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...