Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34883702

ABSTRACT

Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917478

ABSTRACT

Shape memory polymers (SMPs) as a relatively new class of smart materials have gained increasing attention in academic research and industrial developments (e.g., biomedical engineering, aerospace, robotics, automotive industries, and smart textiles). SMPs can switch their shape, stiffness, size, and structure upon being exposed to external stimuli. Electrospinning technique can endow SMPs with micro-/nanocharacteristics for enhanced performance in biomedical applications. Dynamically changing micro-/nanofibrous structures have been widely investigated to emulate the dynamical features of the ECM and regulate cell behaviors. Structures such as core-shell fibers, developed by coaxial electrospinning, have also gained potential applications as drug carriers and artificial blood vessels. The clinical applications of micro-/nanostructured SMP fibers include tissue regeneration, regulating cell behavior, cell growth templates, and wound healing. This review presents the molecular architecture of SMPs, the recent developments in electrospinning techniques for the fabrication of SMP micro-/nanofibers, the biomedical applications of SMPs as well as future perspectives for providing dynamic biomaterials structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...