Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Chem Sci ; 7(9): 6281, 2016 09 01.
Article in English | MEDLINE | ID: mdl-30123468

ABSTRACT

[This corrects the article DOI: 10.1039/C5SC03373J.].

2.
Chem Sci ; 7(1): 642-649, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-28791109

ABSTRACT

Differential cross sections (DSCs) of the HD(v', j') product for the reaction of H atoms with supersonically cooled D2 molecules in a small number of initial rotational states have been measured at a collision energy of 1.97 eV. These DCSs show an oscillatory pattern that results from interferences caused by different dynamical scattering mechanisms leading to products scattered into the same solid angle. The interferences depend on the initial rotational state j of the D2(v = 0, j) reagent and diminish in strength with increasing rotation. We present here a detailed explanation for this behavior and how each dynamical scattering mechanism has a dependence on the helicity Ω, the projection of the initial rotational angular momentum j of the D2 reagent on the approach direction. Each helicity corresponds to a different internuclear axis distribution, with the consequence that the dependence on Ω reveals the preference of the different quasiclassical mechanisms as a function of approach direction. We believe that these results are general and will appear in any reaction for which several mechanisms are operative.

3.
Nanoscale ; 7(45): 18998-9003, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26513039

ABSTRACT

We prepared a nanopatterned polymer film of polydimethylsiloxane (PDMS) via virus imprinting. The imprinted surface exhibited nanoscale cavities with the mean size of 120 ± 4 nm. These cavities demonstrated the ability to preferentially capture a target virus from an aqueous suspension of ultralow volume (5 µL) after only 1 minute of contact. Two inactivated viruses with similar shape, Influenza A (HK68) and Newcastle Disease Virus (NDV), were employed as model pathogens. The polymer film, which was first imprinted with HK68 and exposed sequentially to suspensions containing fluorescently labeled NDV and HK68, was able to preferentially bind HK68 at a capture ratio of 1 : 8.0. When we reversed the procedure and imprinted with NDV, the capture ratio was 1 : 7.6. These results were obtained within 20 minutes of static exposure. The suspensions contained viruses at concentrations close to those occurring physiologically in influenza infections. The limit of detection was approximately 8 fM. Production of virus-imprinted films can be readily scaled to large quantities and yields a disposable, simple-to-use device that allows for rapid detection of viruses.


Subject(s)
Dimethylpolysiloxanes/chemistry , Influenza A virus/genetics , Membranes, Artificial , Newcastle disease virus/chemistry , Influenza A virus/ultrastructure , Newcastle disease virus/ultrastructure
4.
Science ; 337(6091): 212-5, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22628557

ABSTRACT

The source and nature of carbon on Mars have been a subject of intense speculation. We report the results of confocal Raman imaging spectroscopy on 11 martian meteorites, spanning about 4.2 billion years of martian history. Ten of the meteorites contain abiotic macromolecular carbon (MMC) phases detected in association with small oxide grains included within high-temperature minerals. Polycyclic aromatic hydrocarbons were detected along with MMC phases in Dar al Gani 476. The association of organic carbon within magmatic minerals indicates that martian magmas favored precipitation of reduced carbon species during crystallization. The ubiquitous distribution of abiotic organic carbon in martian igneous rocks is important for understanding the martian carbon cycle and has implications for future missions to detect possible past martian life.


Subject(s)
Carbon/analysis , Mars , Meteoroids , Organic Chemicals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Silicates/chemistry , Crystallization , Extraterrestrial Environment , Oxidation-Reduction , Oxides/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Spectrum Analysis, Raman
5.
J Phys Chem Lett ; 3(20): 2959-63, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-26292233

ABSTRACT

Both experiment and theory recently showed that the H + D2(v = 0, j = 0) → HD(v' = 4, j') + D reactions at a collision energy of 1.97 eV display a seemingly anomalous HD product angular distribution that moves in the backward direction as the value of j' increases and the corresponding energy available for product recoil decreases. This behavior was attributed to the presence of a centrifugal barrier along the reaction path. Here, we show, using fully quantum mechanical calculations, that for low recoil energies, the collision mechanism is nearly independent of the HD internal state and the HD product becomes aligned, with its rotational angular momentum j' pointing perpendicular to the recoil momentum k'. As the kinetic energy to overcome this barrier becomes limited, the three atoms adopt a nearly collinear configuration in the transition-state region to permit reaction, which strongly polarizes the resulting HD product. These results are expected to be general for any chemical reaction in the low recoil energy limit.

6.
J Chem Phys ; 134(23): 234310, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21702559

ABSTRACT

One technique for measuring the fraction of molecules pumped to the excited state in stimulated Raman pumping (SRP) is to record the depletion of molecules in the lower state by resonance enhanced multiphoton ionization (REMPI). The presence of electric fields on the order of 10(7) V/cm arising from the pulsed SRP laser beams is sufficient to shift the line position of the REMPI transition to such an extent that the estimate of the pumping efficiency is overestimated unless this shift is accounted for.

7.
Appl Spectrosc ; 57(5): 571-3, 2003 May.
Article in English | MEDLINE | ID: mdl-14658685

ABSTRACT

Cavity ring-down spectroscopy (CRDS) is an extremely sensitive absorption technique that has been applied primarily to gas samples, which are characterized by having narrow absorption features. Recently, CRDS has also been applied to liquid samples, which have broad absorption features. The use of small inexpensive diode lasers as light sources for liquid samples is demonstrated. The low cost coupled with the ease and technical straightforwardness of application gives this technique wide appeal.


Subject(s)
Lasers , Solutions/chemistry , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Acetonitriles/chemistry , Ascorbic Acid/chemistry , Equipment Design , Equipment Failure Analysis , Methylene Blue/chemistry , Oxidation-Reduction , Reproducibility of Results , Sensitivity and Specificity , Toluene/chemistry
8.
J Am Chem Soc ; 123(50): 12714-5, 2001 Dec 19.
Article in English | MEDLINE | ID: mdl-11741451
9.
Anal Chem ; 73(16): 3921-6, 2001 Aug 15.
Article in English | MEDLINE | ID: mdl-11534717

ABSTRACT

A solution of methacryloxypropyltrimethoxysilane in the presence of an acid catalyst, water, toluene, and a photoinitiator was irradiated at 365 nm for 5 min in a 75-microm i.d. capillary to prepare a porous monolithic sol-gel column by a one-step, in situ, process. The photopolymerized sol-gel (PSG) column shows reversed-phase behavior. Using this column, a variety of low-molecular-weight neutral compounds, including polycyclic aromatic hydrocarbons, alkyl benzenes, alkyl phenyl ketones, and steroids are separated from mixtures. Various different operational parameters, such as buffer composition, field strength, and column temperature, were varied to assess their influence on column performance. Use of PSG as a stationary phase for a pressure-driven separation is also demonstrated.

10.
J Chromatogr A ; 924(1-2): 187-95, 2001 Jul 27.
Article in English | MEDLINE | ID: mdl-11521865

ABSTRACT

Porous sol-gel frits are fabricated in a capillary column by filling it with a solution of 3-(trimethoxysilyl)propyl methacrylate, hydrochloric acid, water, toluene (porogen), and a photoinitiator (Irgacure 1800) and exposing it to UV light at 365 nm for 5 min. The separation column (30 cm x 75 microm I.D.) contains between the inlet and outlet frits a 15-cm packed segment filled with 5-microm silica particles modified with the chiral compound (S)-N-3,5-dinitrobenzoyl-1-naphthylglycine. A detection window (1 mm long) is placed immediately after the outlet frit. To demonstrate the performance of this chiral separation column, mixtures of 16 different amino acids (three of which are not naturally occurring) derivatized with the fluorogenic reagent 4-fluoro-7-nitro-2,1,3-benzoxadiazole were separated by capillary chromatography. The enantiomeric separation of the column results in a resolution ranging from 1.21 to 8.29, and a plate height ranging from 8.7 to 39 microm.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/instrumentation , Polymers/chemistry , Microscopy, Electron, Scanning , Photochemistry , Ultraviolet Rays
11.
J Chromatogr A ; 924(1-2): 53-8, 2001 Jul 27.
Article in English | MEDLINE | ID: mdl-11521906

ABSTRACT

Two capillaries, each of which have different surface preparations on their inside walls, are joined together to form a closed loop, and electrodes are placed inside the two capillaries. When the loop is filled with liquid and a potential difference is applied between the two electrodes, a circulating flow of liquid is established inside the loop because the resistance to flow is unequal in going from one electrode to another in a clockwise versus a counterclockwise direction. Consequently, a sample injected into this device, which we call an electrophoretron, repeatedly circulates between the two electrodes and the capillary separation column becomes effectively one of unlimited length. On each cycle the separation between analytes with different mobilities increases, thus enhancing resolution of analytes having nearly the same mobilities. The operation of a prototype electrophoretron is demonstrated.


Subject(s)
Chromatography, Micellar Electrokinetic Capillary/methods , Chromatography, Micellar Electrokinetic Capillary/standards
12.
Proc Natl Acad Sci U S A ; 98(15): 8469-74, 2001 Jul 17.
Article in English | MEDLINE | ID: mdl-11438704

ABSTRACT

Single-molecule studies of the conformations of the intact beta(2) adrenergic receptor were performed in solution. Photon bursts from the fluorescently tagged adrenergic receptor in a micelle were recorded. A photon-burst algorithm and a Poisson time filter were implemented to characterize single molecules diffusing across the probe volume of a confocal microscope. The effects of molecular diffusion and photon number fluctuations were deconvoluted by assuming that Poisson distributions characterize the molecular occupation and photon numbers. Photon-burst size histograms were constructed, from which the source intensity distributions were extracted. Different conformations of the beta(2) adrenergic receptor cause quenching of the bound fluorophore to different extents and hence produce different photon-burst sizes. An analysis of the photon-burst histograms shows that there are at least two distinct substates for the native adrenergic membrane receptor. This behavior is in contrast to one peak observed for the dye molecule, rhodamine 6G. We test the reliability and robustness of the substate number determination by investigating the application of different binning criteria. Conformational changes associated with agonist binding result in a marked change in the distribution of photon-burst sizes. These studies provide insight into the conformational heterogeneity of G protein-coupled receptors in the presence and absence of a bound agonist.


Subject(s)
Receptors, Adrenergic, beta-2/chemistry , Animals , Cell Line , Microscopy, Confocal/methods , Photons , Protein Conformation , Receptors, Adrenergic, beta-2/genetics , Spodoptera
13.
Anal Chem ; 73(9): 1987-92, 2001 May 01.
Article in English | MEDLINE | ID: mdl-11354480

ABSTRACT

Capillaries with inner diameters of 550 microm have successfully been packed with 1.5-microm octadecyl silica particles using frits made of macroporous polymers by the UV photopolymerization of a solution of glycidyl methacrylate and trimethylolpropane trimethacrylate. This type of frit is found superior to one made of low-melting point poly(styrene-co-divinylbenzene) beads. Bubble formation is not observed to occur within these capillary columns under our experimental conditions. Separations can be achieved with sample injection volumes as high as 1 microL. To demonstrate its semipreparative use, a mixture of 500 nL of taxol (20 mM) and its precursor, baccatin III (30 mM), is separated using such a column with a Tris buffer.


Subject(s)
Electrophoresis, Capillary , Taxoids , Alkaloids/chemistry , Alkaloids/isolation & purification , Chromatography, High Pressure Liquid , Electrochemistry , Methacrylates/chemistry , Paclitaxel/chemistry , Paclitaxel/isolation & purification , Polymers/chemistry , Silicon Dioxide/chemistry
14.
Anal Chem ; 73(4): 787-91, 2001 Feb 15.
Article in English | MEDLINE | ID: mdl-11248893

ABSTRACT

We describe the fabrication of nanoengineered holding pipets with concave seating surfaces and fine pressure control. These pipets were shown to exhibit exceptional stability in capturing, transporting, and releasing single cells and liposomes 1-12 microm in diameter, which opens previously inaccessible avenues of research. Three specific examples demonstrated the utility and versatility of this manipulation system. In the first, carboxyrhodamine was selectively incorporated into individual cells by electroporation, after which nearly all the medium (hundreds of microliters) surrounding the docked and tagged cells was rapidly exchanged (in seconds) and the cells were subsequently probed by laser-induced fluorescence (LIF). In the second study, a single liposome containing carboxyrhodamine was transported to a dye-free solution using a transfer pipet, docked to a holding pipet, and held firmly during physical agitation and interrogation by LIF. In the third study, pairs of liposomes were positioned between two microelectrodes, held in contact, and selectively electrofused and the resulting liposomes undocked intact.


Subject(s)
Cells/chemistry , Liposomes/chemistry , Micromanipulation/instrumentation , Electroporation , Fluorescence , Lasers
15.
Anal Chem ; 73(22): 5539-43, 2001 Nov 15.
Article in English | MEDLINE | ID: mdl-11816585

ABSTRACT

In chromatographic separations, the heights of peaks are proportional to the concentrations of sample components present in an injected mixture. In general, an increase in the peak height cannot be achieved by simply increasing the injection time or the sample plug length. An exception occurs if some form of on-line preconcentration is possible. We present a new strategy for achieving on-line preconcentration by the use of a porous chromatographic material that acts as a solid-phase extractor as well as a stationary-phase separator. We are able to realize significant on-line preconcentration using capillary columns filled with a photopolymerized sol-gel (PSG). More than 2-cm plugs of sample solution can be loaded into the capillary and concentrated using a running buffer that is the same as the injection buffer (to avoid solvent gradient effects). As a demonstration, mixtures of three different polycyclic aromatic hydrocarbons, eight different alkyl phenyl ketones, and five different peptides in solutions of aqueous acetonitrile have been injected onto the PSG column and separated by capillary electrochromatography. The preconcentration is marked in terms of peak heights, with up to 100-fold increase for the PAH mixture, 30-fold for the alkyl phenyl ketone mixture, and 20-fold for the peptide mixture. Preconcentration takes place because of the high mass-transfer rates possible in the highly porous structure, and the extent of preconcentration follows the retention factor k for a given analyte.

16.
Anal Chem ; 73(22): 5557-63, 2001 Nov 15.
Article in English | MEDLINE | ID: mdl-11816588

ABSTRACT

Preconcentration effects of solvent gradient and sample stacking are investigated on a photopolymerized sol-gel (PSG) in capillary electrochromatography. The porous PSG monolith has a high mass-transfer rate. This characteristic promotes preconcentration of dilute samples. Plugs of samples more than 2 cm in length prepared in the separation solution (nongradient condition) are injected onto the PSG column. The extent of preconcentration is quite significant, showing up to a 100-fold increase in peak heights of the separated analytes. Even larger preconcentrations are achieved under gradient conditions by dissolving the sample in a matrix with a higher concentration of noneluting solvent (water). For eight alkyl phenyl ketones and four polycyclic aromatic hydrocarbons that serve as neutral test analytes, improvements in peak heights obtained under gradient conditions can be more than a 1000-fold. Indeed, injection of a 91.2-cm plug, which is more than 3 times the total length of the capillary, was possible with only a minor loss in resolution. Five peptides serve as charged test analytes. Nongradient conditions in which the sample is hydrodynamically injected onto the PSG column show sizable preconcentration because of sample stacking. The use of a solvent gradient with the same ionic strength, however, does not appear to have practical value because of destacking caused by the changing organic composition that affects the conductivity. As an alternative preconcentration method, we demonstrate that electric field-enhanced sample injection on the PSG yielded up to a 1000-fold improvement in detection sensitivity for the test peptides.


Subject(s)
Peptides/isolation & purification , Angiotensin II/analysis , Angiotensin II/isolation & purification , Animals , Bradykinin/analysis , Bradykinin/isolation & purification , Electrophoresis, Capillary/methods , Electrophoresis, Capillary/standards , Enkephalin, Methionine/analysis , Enkephalin, Methionine/isolation & purification , Humans , Peptides/analysis , Sensitivity and Specificity , Static Electricity
17.
J Am Soc Mass Spectrom ; 12(12): 1302-11, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11766757

ABSTRACT

Various factors influencing the performance of a Hadamard transform time-of-flight mass spectrometer (HT-TOFMS) have been investigated. Using a nitrogen corona discharge to produce an ion stream of N2+, N3+, and N4+, it is found for spectra containing only N4+ that the signal-to-noise ratio (SNR) closely approaches the value calculated from the ion background by assuming that the ion background follows a Poisson distribution. In contrast, for a more intense beam containing N2+, N3+, and N4+, the SNR is less than its theoretical value because of the appearance of discrete spikes in the mass spectrum caused by deviations in the actual modulation sequence from the ideal one. These spikes can be reduced, however, by decreasing the modulation voltage. Under these optimized conditions, the pseudo-random sequence length is varied to understand how it alters SNR, mass resolution, and scan speed. When the length of the pseudo-random sequence is doubled, the SNR increases by the square root of 2 while the time necessary to record a mass spectrum also doubles. Mass resolution can be varied between 500 and 1200 at m/z = 609 as the sequence length, modulation speed (10 MHz, 25 MHz), and acquisition rate (up to 50 MHz) are changed. Scan speeds of 6000 passes per s can be obtained using a sequence containing 4095 elements modulated at 25 MHz. The capability to tailor the HT-TOFMS to increase the scan speed and resolution with a constant 50% duty cycle makes the technique extremely appealing as a mass analyzer for measuring rapid changes in the composition of an ion stream.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/methods , Algorithms , Data Interpretation, Statistical , Indicators and Reagents , Nitrogen/chemistry , Random Allocation , Reserpine/chemistry
18.
Chemphyschem ; 2(2): 118-21, 2001 Feb 16.
Article in English | MEDLINE | ID: mdl-23696438

ABSTRACT

A time microscope (100× magnification) allows light pulses exiting an optical cavity to be viewed one at a time. A linearly chirped Gaussian pulse is mixed in a nonlinear crystal with the dispersed input waveform; the up-converted light is sent onto an output dispersive network. The resulting temporal image is recorded both with a streak camera and with a spectrometer.

19.
Electrophoresis ; 21(15): 3145-51, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11001212

ABSTRACT

A solution is prepared of 5 microm silica particles modified with (S)-N-3,5-dinitrobenzoyl-1-naphthylglycine (particle 1) or (S)-N-3,5-dinitrophenylaminocarbonyl-valine (particle 2) suspended in liquid tetraethylorthosilicate, ethanol, and aqueous hydrochloric acid. This solution is injected under pressure into a 30 cm long, 75 microm inner diameter capillary column and heated for 1 h at 120 degrees C after which the modified particles are embedded in a monolithic column of sol gel. The packed column measures approximately 15 cm from the inlet to the window used to view the laser-induced fluorescence. Thirteen different amino acids and three nonprotein amino acids are derivatized with the fluorogenic reagent 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) before injection onto the column for capillary electrochromatographic separation. The enantiomeric separation of the monolithic column packed with particle 1 results in a resolution ranging from 1.14 to 4.45, whereas that packed with particle 2 results in a resolution ranging from 0.79 to 1.17. On the basis of resolution and amount of chiral packing material the enantiomeric separation obtained by capillary electrochromatography is judged to be superior to that obtained previously with high performance liquid chromatography (HPLC).


Subject(s)
Amino Acids/chemistry , Amino Acids/isolation & purification , Electrophoresis, Capillary/methods , Indicators and Reagents , Silicon Dioxide , Solutions , Stereoisomerism
20.
Electrophoresis ; 21(7): 1430-1, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10826691

ABSTRACT

When a semipreparative capillary electrochromatography (CEC) capillary is packed with silica particles and exposed to solvent, its mechanical strength is markedly reduced. In our studies, a fused-silica capillary (internal diameter > 200 microm and wall thickness < 150 microm) was packed under pressure (approximately 200 psi) with spherical silica particles (1.5-5 microm) suspended in water or various common organic solvents. After one hour of exposure, the capillary can be readily deformed, and it keeps its deformed shape upon release of the force causing deformation. It is suggested that capillary softening is promoted through the propagation of internal microcracks that have been caused by action of the particles during packing in the presence of solvent. Application of a protective coating to the inside of the capillary is found to reduce or eliminate capillary softening.


Subject(s)
Chromatography, Liquid/instrumentation , Electrophoresis, Capillary/instrumentation , Silicon Dioxide , Chromatography, Liquid/methods , Electrophoresis, Capillary/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...