Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(40): 23106-23123, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34617078

ABSTRACT

We develop Mg/C/O/H ReaxFF parameter sets for two environments: an aqueous force field for magnesium ions in solution and an interfacial force field for minerals and mineral-water interfaces. Since magnesium is highly ionic, we choose to fix the magnesium charge and model its interaction with C/O/H through Coulomb, Lennard-Jones, and Buckingham potentials. We parameterize the forcefields against several crystal structures, including brucite, magnesite, magnesia, magnesium hydride, and magnesium carbide, as well as Mg2+ water binding energies for the aqueous forcefield. Then, we test the forcefield for other magnesium-containing crystals, solvent separated and contact ion-pairs and single-molecule/multilayer water adsorption energies on mineral surfaces. We also apply the forcefield to the forsterite-water and brucite-water interface that contains a bicarbonate ion. We observe that a long-range proton transfer mechanism deprotonates the bicarbonate ion to carbonate at the interface. Free energy calculations show that carbonate can attach to the magnesium surface with an energy barrier of about 0.22 eV, consistent with the free energy required for aqueous Mg-CO3 ion pairing. Also, the diffusion constant of the hydroxide ions in the water layers formed on the forsterite surface are shown to be anisotropic and heterogeneous. These findings can help explain the experimentally observed fast nucleation and growth of magnesite at low temperature at the mineral-water-CO2 interface in water-poor conditions.

2.
ACS Nano ; 11(11): 11317-11329, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29053246

ABSTRACT

Nanoparticles from colloidal solution-with controlled composition, size, and shape-serve as excellent building blocks for plasmonic devices and metasurfaces. However, understanding hierarchical driving forces affecting the geometry of oligomers and interparticle gap spacings is still needed to fabricate high-density architectures over large areas. Here, electrohydrodynamic (EHD) flow is used as a long-range driving force to enable carbodiimide cross-linking between nanospheres and produces oligomers exhibiting sub-nanometer gap spacing over mm2 areas. Anhydride linkers between nanospheres are observed via surface-enhanced Raman scattering (SERS) spectroscopy. The anhydride linkers are cleavable via nucleophilic substitution and enable placement of nucleophilic molecules in electromagnetic hotspots. Atomistic simulations elucidate that the transient attractive force provided by EHD flow is needed to provide a sufficient residence time for anhydride cross-linking to overcome slow reaction kinetics. This synergistic analysis shows assembly involves an interplay between long-range driving forces increasing nanoparticle-nanoparticle interactions and probability that ligands are in proximity to overcome activation energy barriers associated with short-range chemical reactions. Absorption spectroscopy and electromagnetic full-wave simulations show that variations in nanogap spacing have a greater influence on optical response than variations in close-packed oligomer geometry. The EHD flow-anhydride cross-linking assembly method enables close-packed oligomers with uniform gap spacings that produce uniform SERS enhancement factors. These results demonstrate the efficacy of colloidal driving forces to selectively enable chemical reactions leading to future assembly platforms for large-area nanodevices.

SELECTION OF CITATIONS
SEARCH DETAIL
...