Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(20): 36996-37005, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258618

ABSTRACT

In a recently published article by Backer [Opt. Express27(21), 30308 (2019).10.1364/OE.27.030308], a computational inverse design method is developed for designing optical systems composed of multiple metasurfaces. The forward propagation model used in this method was a discretized version of the angular spectrum propagator described by Goodman [Introduction to Fourier Optics, 1996]. However, slight modifications are necessary to increase the accuracy of this inverse design method. This comment examines the accuracy of the results obtained by the above-mentioned method by a full-wave electromagnetic solver and explains the reason of their difference. Thereafter, slight modifications to the method proposed by Backer are suggested, and the accuracy of final formulation is verified by a full-wave electromagnetic solver.

2.
Sci Rep ; 12(1): 15747, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36130987

ABSTRACT

Optical computing is highly desired as a potential strategy for circumventing the performance limitations of semiconductor-based electronic devices and circuits. Optical logic gates are considered as fundamental building blocks for optical computation and they enable logic functions to be performed extremely quickly without the generation of heat and crosstalk. Here, we discuss the design of a multi-functional optical logic gate based on an on-chip diffractive optical neural network that can perform AND, NOT and OR logic operations at the wavelength of 1.55 µm. The wavelength-independent operation of the multi-functional logic gate at seven wavelengths (over a bandwidth of 60 nm) is also studied which paves the way for wavelength division multiplexed parallel computation. This simple, highly-integrable, low-loss, energy-efficient and broadband optical logic gate provides a path for the development of high-speed on-chip nanophotonic processors for future optical computing applications.


Subject(s)
Logic , Neural Networks, Computer , Electronics
3.
Opt Express ; 28(24): 36668-36684, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379756

ABSTRACT

An integrated photonic neural network is proposed based on on-chip cascaded one-dimensional (1D) metasurfaces. High-contrast transmitarray metasurfaces, termed as metalines in this paper, are defined sequentially in the silicon-on-insulator substrate with a distance much larger than the operation wavelength. Matrix-vector multiplications can be accomplished in parallel and with low energy consumption due to intrinsic parallelism and low-loss of silicon metalines. The proposed on-chip whole-passive fully-optical meta-neural-network is very compact and works at the speed of light, with very low energy consumption. Various complex functions that are performed by digital neural networks can be implemented by our proposal at the wavelength of 1.55 µm. As an example, the performance of our optical neural network is benchmarked on the prototypical machine learning task of classification of handwritten digits images from the Modified National Institute of Standards and Technology (MNIST) dataset, and an accuracy comparable to the state of the art is achieved.

4.
World J Hepatol ; 9(4): 209-216, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28217258

ABSTRACT

AIM: To evaluate the effects of aqueous extract of Salep on Paraquat-mediated liver injury. METHODS: In this experimental study, 56 adult male Wistar rats were divided randomly to 7 groups as control, sham, and 5 experimental groups. In control group, rats did not receive any substance during experiment. In Sham group, rats were given distilled water according to their body weight and in experimental groups, Paraquat alone and with different doses of Salep aqueous extract (40, 80, 160 and 320 mg/kg) was given intraperitoneal daily for 14 d. After that, liver biochemical parameter and histologic changes were analyzed and compared in different groups. RESULTS: Paraquat compared to control and sham groups, significantly (P < 0.05) increased serum level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), bilirubin, malondialdehyde (MDA) and total oxidant capacity (TOC); while level of total protein, albumin and total antioxidant capacity (TAC) were remarkably decreased by Paraquat. Salep at doses of 80, 160 and 320 mg/kg significantly decreased serum level of ALT, AST, ALP, bilirubin, MDA and TOC and significantly increased total protein, albumin and TAC level as compared to Paraquat exposed group in dose dependent manner. Aqueous extract of Salep at doses of 40 mg/kg made no significant changes in serum level of mentioned biochemical parameters. Liver microscopic observation revealed that Paraquat could cause hepatocyte necrosis, degenerative changes, proliferation and activation of Kupffer cells (sporadically) which were reduced by Salep treatment. CONCLUSION: Salep possesses remarkable hepatoprotection activity against Paraquat-induced hepatic injury by having antioxidant activity and reducing lipid peroxidation and oxidative stress.

5.
Genome Med ; 7: 103, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26449484

ABSTRACT

BACKGROUND: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles. METHODS: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121-133) and an additional dataset in subcutaneous and visceral fat (n = 149). RESULTS: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts. CONCLUSIONS: Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits.


Subject(s)
DNA Methylation , Obesity/genetics , Adipose Tissue/metabolism , Adolescent , Adult , Aged , Alleles , Brain/metabolism , CpG Islands , Enhancer Elements, Genetic , Female , Fibroblasts/metabolism , Humans , Male , Middle Aged , Obesity/blood , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Young Adult
6.
Psychiatry Res ; 224(3): 246-53, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25456522

ABSTRACT

The role of rumination at the beginning of eating disorder (ED) is not well understood. We hypothesised that impulsivity, rumination and restriction could be associated with neural activity in response to food stimuli in young individuals with eating disorders (ED). We measured neural responses with functional magnetic resonance imaging (fMRI), tested working memory (WM) and administered the eating disorders examination questionnaire (EDE-Q), Barratt impulsivity scale (BIS-11) and obsessive-compulsive inventory (OCI-R) in 15 adolescent females with eating disorder not otherwise specified (EDNOS) (mean age 15 years) and 20 age-matched healthy control females. We found that EDNOS subjects had significantly higher scores on the BIS 11, EDE-Q and OCI-R scales. Significantly increased neural responses to food images in the EDNOS group were observed in the prefrontal circuitry. OCI-R scores in the EDNOS group also significantly correlated with activity in the prefrontal circuitry and the cerebellum. Significantly slower WM responses negatively correlated with bilateral superior frontal gyrus activity in the EDNOS group. We conclude that ruminations, linked to WM, are present in adolescent females newly diagnosed with EDNOS. These may be risk factors for the development of an eating disorder and may be detectable before disease onset.


Subject(s)
Cerebral Cortex/physiopathology , Feeding and Eating Disorders/physiopathology , Impulsive Behavior/physiology , Memory, Short-Term/physiology , Prefrontal Cortex/physiopathology , Adolescent , Female , Humans , Magnetic Resonance Imaging , Obsessive-Compulsive Disorder/physiopathology
7.
Psychoneuroendocrinology ; 38(9): 1668-74, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23428257

ABSTRACT

Acute sleep loss increases food intake in adults. However, little is known about the influence of acute sleep loss on portion size choice, and whether this depends on both hunger state and the type of food (snack or meal item) offered to an individual. The aim of the current study was to compare portion size choice after a night of sleep and a period of nocturnal wakefulness (a condition experienced by night-shift workers, e.g. physicians and nurses). Sixteen men (age: 23 ± 0.9 years, BMI: 23.6 ± 0.6 kg/m(2)) participated in a randomized within-subject design with two conditions, 8-h of sleep and total sleep deprivation (TSD). In the morning following sleep interventions, portion size, comprising meal and snack items, was measured using a computer-based task, in both fasted and sated state. In addition, hunger as well as plasma levels of ghrelin were measured. In the morning after TSD, subjects had increased plasma ghrelin levels (13%, p=0.04), and chose larger portions (14%, p=0.02), irrespective of the type of food, as compared to the sleep condition. Self-reported hunger was also enhanced (p<0.01). Following breakfast, sleep-deprived subjects chose larger portions of snacks (16%, p=0.02), whereas the selection of meal items did not differ between the sleep interventions (6%, p=0.13). Our results suggest that overeating in the morning after sleep loss is driven by both homeostatic and hedonic factors. Further, they show that portion size choice after sleep loss depend on both an individual's hunger status, and the type of food offered.


Subject(s)
Appetite/physiology , Feeding Behavior/psychology , Food Preferences/psychology , Hunger/physiology , Portion Size/psychology , Sleep Deprivation/psychology , Acute Disease , Adult , Fasting/blood , Fasting/physiology , Fasting/psychology , Food Preferences/physiology , Ghrelin/blood , Homeostasis , Humans , Male , Meals , Pleasure , Polysomnography , Self Report , Sleep Deprivation/physiopathology , Snacks , Wakefulness/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...