Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 120: 111739, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545882

ABSTRACT

The cell-extracellular matrix (ECM) interactions are known to have a strong impact on cell behaviors in neural tissues. Due to complex physiology system and limited regenerative capacity of nervous system, neural tissue engineering has attracted attention as a promising strategy. In this study, we designed a hydrogel loaded by poly (lactic-co-glycolic acid) (PLGA) microspheres containing carbon nanotubes (CNT) and the biochemical differentiation factors, as a scaffold, in order to replicate the neural niche for stem cell growth (and/or differentiation). Different formulations from Hyaluronic acid (H), Poloxamer (P), Ethoxy-silane-capped poloxamer (PE), and cross-linked Alginate (Alg) were utilized as an in situ gel structure matrix to mirror the mechanical properties of the ECM of CNS. Subsequently, conductivity, surface morphology, size of microspheres, and CNT dispersion in microsphere were measured using two probes electrical conductometer, scanning electron microscopy (SEM), dynamic light scattering (DLS), and Raman spectroscopy, respectively. According to SEM and fluorescent microscopy images, CNTs increased the porosity of polymeric structure, which, in turn, facilitated the adhesion of stem cells on the surface of microspheres compared with control. Microstructure and rheological behaviors of different gel compositions were investigated using SEM and parallel-plate oscillatory rheometer, respectively. The MTT assay showed the toxicity profile of hydrogels was appropriate for cell transplantation. The confocal images illustrated the 3D platform of P15%H10% and P20%H5% gel formulations containing the PLGA-CNT microspheres, which allows the proliferation of neural stem cells (NSCs) derived from MSC. The results of real-time PCR and immunocytochemistry showed neuronal differentiation capacity of cultured NSCs derived from MSC in the alginate gel that contained PLGA-CNT microspheres as well as other control groups. The dispersion of the CNT-PLGA microspheres, covered by NSCs, into alginate gel in the presence of induction factors was found to notably enhance the expression of Sox2-SYP and ß-Tubulin III neuronal markers.


Subject(s)
Hydrogels , Nanotubes, Carbon , Cell Differentiation , Lactic Acid , Microspheres , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Engineering , Tissue Scaffolds
2.
Int Immunopharmacol ; 84: 106535, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32361569

ABSTRACT

During the past recent years, various therapies emerged in the era of breast cancer. Breast cancer is a heterogeneous disease in which genetic and environmental factors are involved. Breast cancer stem cells (BCSCs) are the main player in the aggressiveness of different tumors and also, these cells are the main challenge in cancer treatment. Moreover, the major obstacle to achieve an effective treatment is resistance to therapies. There are various types of treatment for breast cancer (BC) patients. Therefore, in this review, we present the current treatments, novel approaches such as antibody-drug conjugation systems (ADCs), nanoparticles (albumin-, metal-, lipid-, polymer-, micelle-based nanoparticles), and BCSCs-based therapies. Furthermore, prognostic and predictive biomarkers will be discussed also biomarkers that have been applied by some tests such as Oncotype DX, Mamm αPrint, and uPA/PAI-1 are regarded as suitable prognostic and predictive factors in breast cancer.


Subject(s)
Breast Neoplasms , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans
3.
Adv Exp Med Biol ; 1089: 1-22, 2018.
Article in English | MEDLINE | ID: mdl-29876867

ABSTRACT

Obesity as a worldwide growing challenge is determined by abnormal fat deposition, which may damage general health. Weight loss and control of related risk factors like type2 diabetes, dyslipidemia, hypertension, cardiovascular diseases, and metabolic syndrome is an important concern in obesity management. Different therapeutic approaches such as lifestyle change, medications, and surgery are introduced for obesity treatment. Despite of gaining partially desirable results, the problem is remained unsolved. Therefore, finding a new approach that can overcome previous limitations is very attractive for both researchers and clinicians. Cell-based therapy using adipose-derived stromal cells seems to be a promising strategy to control obesity and related syndromes. To attain this aim, understanding of different type of adipose tissues, main signaling pathways, and different factors involved in development of adipocyte is essential. Recently, several cell-based methods like stem cell administration, brown adipose tissue transplantation, cell lysates and exosomes have been examined on obese mouse models to manage obesity and related disorders. Successful outcome of such preclinical studies can encourage the cell-based clinical trials in the near future.


Subject(s)
Cell- and Tissue-Based Therapy , Obesity/therapy , Stem Cells/cytology , Adipose Tissue, Brown/transplantation , Animals , Exosomes , Mice , Mice, Obese
SELECTION OF CITATIONS
SEARCH DETAIL
...