Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Zygote ; 31(1): 1-7, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36321419

ABSTRACT

Fertility preservation is one of the most important issues in assisted reproductive technology. Previous studies have shown that cytokines and growth factors can improve follicle growth. The endometrial stromal cells secrete various factors that are involved in maintaining the integrity of uterine and epithelial secretory function. The platelet-rich plasma contains a large assembly of platelets suspended in plasma that successfully improves the viability and growth of various cell lines. This work aimed to investigate the influences of conditioned medium (CM) and platelet-rich plasma (PRP) on the development of ovarian follicles in infertile mice due to cyclophosphamide (CYC) exposure. In this study, 65 healthy BALB/c female mice (∼28-30 g and 6-8 weeks old) in five groups were studied. Immunohistochemistry (IHC) was used to detect growth differentiation factor 9 (GDF9)-positive cells. The mRNA expression levels of SMAD1, SMAD2, and BMP15 was assessed using reverse transcription-polymerase chain reaction (RT-PCR) method. The expression levels of SMAD1, GDF9, BMP15, and SMAD2 in the CM+PRP group was significantly more than in the CM and PRP groups. In addition, live birth occurred in the CM+PRP group. Treatment with CM+PRP in infertile mice due to Cy exposure increased fertility and live-birth rate. In general, our study suggested that the CM and PRP combination could improve the growth of mice ovarian follicles in vivo.


Subject(s)
Ovarian Follicle , Platelet-Rich Plasma , Female , Mice , Animals , Culture Media, Conditioned/pharmacology
2.
J Dent (Shiraz) ; 23(2 Suppl): 349-360, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36588966

ABSTRACT

Statement of the Problem: The administration of both platelet rich plasma (PRP) and silicon dioxide (SiO2) to the bone defects accelerates bone repair and regeneration. Appli-cation of both of them may show synergistic regenerative effects. Purpose: Our objective was to evaluate the possible synergistic osteogenic effects of PRP and SiO2 by injecting them using an ad hoc device. Materials and Method: In this experimental study, PRP/SiO2 scaffolds were fabricated by in situ casting method with the help of CaCl2 as the gelation factor and alginate as the stroma; and then, the biodegradability and spatial arrangement were assessed. The injecta-ble scaffold was introduced into the 40 rabbit mandibular defects by an ad hoc two-channel injecting device. Five defects received PRP/SiO2/alginate as the treatment; the other sets of defects were treated by PRP/alginate, SiO2/alginate, and the last five defects served as the control groups by getting only alginate injections. The osteogenicity of the scaffolds was evaluated by radiological and histological procedures; they were then compared with each other. Analysis of variance and least significant difference tests were used to analyze the data. Results: The SiO2-treated group showed a significant higher bone area compared to PRP/ SiO2-treated groups on day 40 (p= 0.013). The number of osteocytes was higher in SiO2-treated than the control groups on both 20 and 40 days (p= 0.032 and 0.022, respectively). The number of osteoclast was also higher in SiO2-treated than PRP-treated group (p= 0.028). In addition, the cells of this group had just started to create Haversian systems in newly formed bone tissues. Conclusion: Silica demonstrated a superior osteogenic activity over PRP in both short and long term periods. Evidently, they showed no synergistic regenerative effects. Our ad hoc device was efficiently capable of inserting the scaffolds into the injured sites with no diffi-culties or complications.

3.
J Transl Med ; 18(1): 361, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32962683

ABSTRACT

BACKGROUND: Extracellular vesicles (ECV) and bone extracellular matrix (ECM) have beneficial effects on the treatment of some pathological conditions. The purpose of this study was to find the synergic effects of decellularized bone (DB) ECM and ECVs on the repair of rabbit. METHODS: The quality of decellularized sheep bones was confirmed by H&E, Hoechst, DNA quantification, immunohistochemistry, histochemical staining, and scanning electron microscopy (SEM). Osteoblast-derived ECVs were evaluated by internalization test, Transmission electron microscopy, Dynamic light scattering, and flow cytometry for CD9, CD63, CD81 markers. The hydrogel containing DB and hydroxyapatite (HA) with or without ECVs was evaluated for osteoblast functions and bone repair both in vitro and in vivo. RESULTS: The data indicated ECM preservation after decellularization as well as cell depletion. In vitro assessments revealed that mineralization and alkaline phosphatase activity did not improve after treatment of MG63 cells by ECVs, while in vivo morphomatrical estimations showed synergic effects of ECVs and DB + HA hydrogels on increasing the number of bone-specific cells and vessel and bone area compared to the control, DB + HA and ECV-treated groups. CONCLUSIONS: The DB enriched with ECVs can be an ideal scaffold for bone tissue engineering and may provide a suitable niche for bone cell migration and differentiation.


Subject(s)
Durapatite , Extracellular Vesicles , Animals , Bone Matrix , Extracellular Matrix , Rabbits , Sheep , Tissue Engineering , Tissue Scaffolds
4.
Biotech Histochem ; 95(3): 210-218, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31617423

ABSTRACT

Although embryonic stem (ES) cells can differentiate into germ cells, little is known about the influence of culture media on this process. We investigated the effect of two culture media on the capacity of ES cells to differentiate into germ cells using embryoid body (EB) and monolayer culture protocols. Germ cell differentiation was induced in mouse ES cells under four experimental conditions: EB/Dulbecco's modified Eagle's medium (EB/DMEM), EB/knockout Dulbecco's modified Eagle's medium (EB/KO-DMEM), monolayer/Dulbecco's modified Eagle's medium (monolayer/DMEM), and monolayer/knockout Dulbecco's modified Eagle's medium (monolayer/KO-DMEM). After incubation for 6 days, quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess expression of the germ cell markers, Mvh, Oct4, Rec8, Scp1, Scp3 and Stra8. Also, Oct4 and Mvh expressions at the protein level were assessed using immunocytochemistry; we evaluated alkaline phosphatase activity in addition to cell number and viability. Germ cell-specific marker expression was increased significantly in cells differentiated in KO-DMEM for both EB and monolayer protocols; the highest level was in cultures using the EB protocol. The highest cell proliferation rate was observed using the monolayer/KO-DMEM protocol and the lowest using the EB/DMEM protocol. Generally, KO-DMEM exhibited the greatest impact on germ cell differentiation and cell proliferation. Optimization of germ cell differentiation of ES cells requires careful selection of culture medium.


Subject(s)
Cell Differentiation/drug effects , Embryonic Stem Cells/cytology , Germ Cells/drug effects , Mouse Embryonic Stem Cells/cytology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Culture Media/pharmacology , Germ Cells/cytology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...