Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(3): 3900-3926, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33656324

ABSTRACT

The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.


Subject(s)
Biocompatible Materials , Nanostructures
2.
J Phys Chem Lett ; 10(21): 6962-6966, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31637916

ABSTRACT

A machine learning technique, namely, support vector regression, is implemented to enhance single-walled carbon nanotube (SWCNT) thin-film performance for transparent and conducting applications. We collected a comprehensive data set describing the influence of synthesis parameters (temperature and CO2 concentration) on the equivalent sheet resistance (at 90% transmittance in the visible light range) for SWCNT films obtained by a semi-industrial aerosol (floating-catalyst) CVD with CO as a carbon source and ferrocene as a catalyst precursor. The predictive model trained on the data set shows principal applicability of the method for refining synthesis conditions toward the advanced optoelectronic performance of multiparameter processes such as nanotube growth. Further doping of the improved carbon nanotube films with HAuCl4 results in the equivalent sheet resistance of 39 Ω/□-one of the lowest values achieved so far for SWCNT films.

SELECTION OF CITATIONS
SEARCH DETAIL
...