Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 125(1-4): 84-7, 2007.
Article in English | MEDLINE | ID: mdl-17182603

ABSTRACT

Several intercomparison exercises were organised by the International Atomic Energy Agency (IAEA) on the determination of operational quantities at the regional or interregional basis. In the Latin American region an intercomparison for the determination of the operational quantity Hp(10) was completed mid-2004, as a follow-up to previous exercises carried out during the 1990s. Eighteen individual external monitoring services from nineteen Member States participated in the first phase. The second phase grouped 15 services that had participated in the first phase. Dosemeter irradiations in photon beams were done by four Secondary Standard Dosimetry Laboratories (SSDLs) of the region. The preparation of this exercises involved an audit by the IAEA SSDL, where reference irradiations were provided to all participants for verification of their systems. During the first phase (2002-2003) only 9 out of 18 services met the performance requirements for such monitoring services. Necessary corrective actions and procedure verification were implemented. During the second phase (2004) 11 out of 15 services fulfilled the performance criteria. This intercomparison shows that there has been improvement in the second phase and most participants demonstrated a satisfactory performance of the quantity tested.


Subject(s)
Occupational Exposure/analysis , Radiation Monitoring/standards , Radiation Protection/standards , Risk Assessment/standards , Body Burden , Humans , Internationality , Latin America , Occupational Exposure/prevention & control , Quality Control , Relative Biological Effectiveness , Reproducibility of Results , Sensitivity and Specificity
2.
J Am Coll Cardiol ; 37(6): 1590-7, 2001 May.
Article in English | MEDLINE | ID: mdl-11345370

ABSTRACT

OBJECTIVES: This study delineates between infarcts varying in transmurality by using endocardial electrophysiologic information obtained during catheter-based mapping. BACKGROUND: The degree of infarct transmurality extent has previously been linked to patient prognosis and may have significant impact on therapeutic strategies. Catheter-based endocardial mapping may accurately delineate between infarcts differing in the transmural extent of necrotic tissue. METHODS: Electromechanical mapping was performed in 13 dogs four weeks after left anterior descending coronary artery ligation, enabling three-dimensional reconstruction of the left ventricular chamber. A concomitant reduction in bipolar electrogram amplitude (BEA) and local shortening indicated the infarcted region. In addition, impedance, unipolar electrogram amplitude (UEA) and slew rate (SR) were quantified. Subsequently, the hearts were excised, stained with 2,3,5-triphenyltetrazolium chloride and sliced transversely. The mean transmurality of the necrotic tissue in each slice was determined, and infarcts were divided into <30%, 31% to 60% and 61% to 100% transmurality subtypes to be correlated with the corresponding electrical data. RESULTS: From the three-dimensional reconstructions, a total of 263 endocardial points were entered for correlation with the degree of transmurality (4.6 +/- 2.4 points from each section). All four indices delineated infarcted tissue. However, BEA (1.9 +/- 0.7 mV, 1.4 +/- 0.7 mV, 0.8 +/- 0.4 mV in the three groups respectively, p < 0.05 between each group) proved superior to SR, which could not differentiate between the second (31% to 60%) and third (61% to 100%) transmurality subgroups, and to UEA and impedance, which could not differentiate between the first (<30%) and second transmurality subgroups. CONCLUSIONS: The degree of infarct transmurality extent can be derived from the electrical properties of the endocardium obtained via detailed catheter-based mapping in this animal model.


Subject(s)
Cardiac Catheterization/methods , Electric Impedance , Electromagnetic Phenomena/methods , Electrophysiologic Techniques, Cardiac/methods , Fluoroscopy/methods , Myocardial Infarction/diagnosis , Radiography, Interventional/methods , Signal Processing, Computer-Assisted , Animals , Cardiac Catheterization/instrumentation , Disease Models, Animal , Dogs , Electromagnetic Phenomena/instrumentation , Electrophysiologic Techniques, Cardiac/instrumentation , Fluoroscopy/instrumentation , Myocardial Infarction/classification , Predictive Value of Tests , Radiography, Interventional/instrumentation
3.
Am J Physiol Heart Circ Physiol ; 280(1): H179-88, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11123232

ABSTRACT

Precise identification of infarcted myocardial tissue is of importance in diagnostic and interventional cardiology. A three-dimensional, catheter-based endocardial electromechanical mapping technique was used to assess the ability of local endocardial impedance in delineating the exact location, size, and border of canine myocardial infarction. Electromechanical mapping of the left ventricle was performed in a control group (n = 10) and 4 wk after left anterior descending coronary artery ligation (n = 10). Impedance, bipolar electrogram amplitude, and endocardial local shortening (LS) were quantified. The infarcted area was compared with the corresponding regions in controls, revealing a significant reduction in impedance values [infarcted vs. controls: 168.8 +/- 11. 7 and 240.7 +/- 22.3 Omega, respectively (means +/- SE), P < 0.05] bipolar electrogram amplitude (1.8 +/- 0.2 mV, 4.4 +/- 0.7 mV, P < 0. 05), and LS (-2.36 +/- 1.6%, 11.9 +/- 0.9%, P < 0.05). The accuracy of the impedance maps in delineating the location and extent of the infarcted region was demonstrated by the high correlation with the infarct area (Pearson's correlation coefficient = 0.942) and the accurate identification of the infarct borders in pathology. By accurately defining myocardial infarction and its borders, endocardial impedance mapping may become a clinically useful tool in differentiating healthy from necrotic myocardial tissue.


Subject(s)
Myocardial Infarction/pathology , Algorithms , Animals , Cardiography, Impedance/methods , Coronary Vessels , Dogs , Electrophysiology , Imaging, Three-Dimensional/methods , Ligation , Myocardial Contraction , Myocardial Infarction/physiopathology
4.
Biosystems ; 27(2): 115-23, 1992.
Article in English | MEDLINE | ID: mdl-1457735

ABSTRACT

The antigen-antibody interaction occurring previous to the triggering of the immunological response is analyzed as a relational process in terms of lattices. Accordingly, this process is expressed as a lattice belonging to a pseudo-Boolean algebraic variety. The Heyting arrow operation, which appears in this kind of algebra, is used to analyze behaviors between non-comparable biological states expressed by the lattice. The resulting states coming from the arrows are connected with the influence of increasing and decreasing energies involved in the linking process.


Subject(s)
Antigen-Antibody Reactions , Models, Biological , Mathematics , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...