Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 23: 2892-2910, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39108677

ABSTRACT

Synthetic data generation has emerged as a promising solution to overcome the challenges which are posed by data scarcity and privacy concerns, as well as, to address the need for training artificial intelligence (AI) algorithms on unbiased data with sufficient sample size and statistical power. Our review explores the application and efficacy of synthetic data methods in healthcare considering the diversity of medical data. To this end, we systematically searched the PubMed and Scopus databases with a great focus on tabular, imaging, radiomics, time-series, and omics data. Studies involving multi-modal synthetic data generation were also explored. The type of method used for the synthetic data generation process was identified in each study and was categorized into statistical, probabilistic, machine learning, and deep learning. Emphasis was given to the programming languages used for the implementation of each method. Our evaluation revealed that the majority of the studies utilize synthetic data generators to: (i) reduce the cost and time required for clinical trials for rare diseases and conditions, (ii) enhance the predictive power of AI models in personalized medicine, (iii) ensure the delivery of fair treatment recommendations across diverse patient populations, and (iv) enable researchers to access high-quality, representative multimodal datasets without exposing sensitive patient information, among others. We underline the wide use of deep learning based synthetic data generators in 72.6 % of the included studies, with 75.3 % of the generators being implemented in Python. A thorough documentation of open-source repositories is finally provided to accelerate research in the field.

2.
Patterns (N Y) ; 5(7): 100992, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39081575

ABSTRACT

Prostate cancer diagnosis and treatment relies on precise MRI lesion segmentation, a challenge notably for small (<15 mm) and intermediate (15-30 mm) lesions. Our study introduces ProLesA-Net, a multi-channel 3D deep-learning architecture with multi-scale squeeze and excitation and attention gate mechanisms. Tested against six models across two datasets, ProLesA-Net significantly outperformed in key metrics: Dice score increased by 2.2%, and Hausdorff distance and average surface distance improved by 0.5 mm, with recall and precision also undergoing enhancements. Specifically, for lesions under 15 mm, our model showed a notable increase in five key metrics. In summary, ProLesA-Net consistently ranked at the top, demonstrating enhanced performance and stability. This advancement addresses crucial challenges in prostate lesion segmentation, enhancing clinical decision making and expediting treatment processes.

3.
Sci Rep ; 13(1): 714, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639671

ABSTRACT

Automatic segmentation of the prostate of and the prostatic zones on MRI remains one of the most compelling research areas. While different image enhancement techniques are emerging as powerful tools for improving the performance of segmentation algorithms, their application still lacks consensus due to contrasting evidence regarding performance improvement and cross-model stability, further hampered by the inability to explain models' predictions. Particularly, for prostate segmentation, the effectiveness of image enhancement on different Convolutional Neural Networks (CNN) remains largely unexplored. The present work introduces a novel image enhancement method, named RACLAHE, to enhance the performance of CNN models for segmenting the prostate's gland and the prostatic zones. The improvement in performance and consistency across five CNN models (U-Net, U-Net++, U-Net3+, ResU-net and USE-NET) is compared against four popular image enhancement methods. Additionally, a methodology is proposed to explain, both quantitatively and qualitatively, the relation between saliency maps and ground truth probability maps. Overall, RACLAHE was the most consistent image enhancement algorithm in terms of performance improvement across CNN models with the mean increase in Dice Score ranging from 3 to 9% for the different prostatic regions, while achieving minimal inter-model variability. The integration of a feature driven methodology to explain the predictions after applying image enhancement methods, enables the development of a concrete, trustworthy automated pipeline for prostate segmentation on MR images.


Subject(s)
Image Processing, Computer-Assisted , Prostate , Male , Humans , Prostate/diagnostic imaging , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Magnetic Resonance Imaging/methods , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL