Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(29): 34877-34888, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34254781

ABSTRACT

This paper demonstrates the feasibility of a long-range antenna sensor embedded underneath a liquid repellent fabric to be employed as a wearable sensor in personal protective fabrics. The sensor detects and monitors hazardous aqueous liquids on the outer layer of fabrics, to add an additional layer of safety for professionals working in hazardous environments. A modified patch antenna was designed to include a meandering-shaped resonant structure, which was embedded underneath the fabric. Superhydrophobic fabrics were prepared using silica nanoparticles and a low-surface-energy fluorosilane. 4 to 20 µL droplets representing hazardous aqueous solutions were drop-cast on the fabrics to investigate the performance of the embedded antenna sensor. Long-range (S21) measurements at a distance of 2-3 m were performed using the antenna sensor with treated and untreated fabrics. The antenna sensor successfully detected the liquid for both types of fabrics. The resonant frequency sensitivity of the antenna sensor underneath the treated fabric exhibiting superhydrophobicity was measured as 370 kHz/µL, and 1 MHz/µL for the untreated fabric. The results demonstrate that the antenna sensor is a good candidate for wearable hazardous aqueous droplet detection on fabrics.


Subject(s)
Personal Protective Equipment , Textiles , Water/analysis , Wearable Electronic Devices , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Silanes/chemistry , Silicon Dioxide/chemistry , Wettability , Wireless Technology
2.
Sci Rep ; 11(1): 13707, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34211060

ABSTRACT

A patch antenna sensor with T-shaped slots operating at 2.378 GHz was developed and investigated for wireless ice and frost detection applications. Detection was performed by monitoring the resonant amplitude and resonant frequency of the transmission coefficient between the antenna sensor and a wide band receiver. This sensor was capable of distinguishing between frost, ice, and water with total shifts in resonant frequency of 32 MHz and 36 MHz in the presence of frost and ice, respectively, when compared to the bare sensor. Additionally, the antenna was sensitive to both ice thickness and the surface area covered in ice displaying resonant frequency shifts of 2 MHz and 8 MHz respectively between 80 and 160 µL of ice. By fitting an exponential function to the recorded data, the freezing rate was also extracted. The analysis within this work distinguishes the antenna sensor as a highly accurate and robust method for wireless ice accretion detection and monitoring. This technology has applications in a variety of industries including the energy sector for detection of ice on wind turbines and power lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...