Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 11(1): 3891, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33594146

ABSTRACT

We perform a numerical and experimental study of immiscible two-phase flows within predominantly 2D transparent PDMS microfluidic domains with disordered pillar-like obstacles, that effectively serve as artificial porous structures. Using a high sensitivity pressure sensor at the flow inlet, we capture experimentally the pressure dynamics under fixed flow rate conditions as the fluid-fluid interface advances within the porous domain, while also monitoring the corresponding phase distribution patterns using optical microscopy. Our experimental study covers 4 orders of magnitude with respect to the injection flow rate and highlights the characteristics of immiscible displacement processes during the transition from the capillarity-controlled interface displacement regime at lower flow rates, where the pores are invaded sequentially in the form of Haines jumps, to the viscosity-dominated regime, where multiple pores are invaded simultaneously. In the capillary regime, we recover a clear correlation between the recorded inlet pressure and the pore-throat diameter invaded by the interface that follows the Young-Laplace equation, while during the transition to the viscous regime such a correlation is no longer evident due to multiple pore-throats being invaded simultaneously (but also due to significant viscous pressure drop along the inlet and outlet channels, that effectively mask capillary effects). The performed experimental study serves for the validation of a robust Level-Set model capable of explicitly tracking interfacial dynamics at sub-pore scale resolutions under identical flow conditions. The numerical model is validated against both well-established theoretical flow models, that account for the effects of viscous and capillary forces on interfacial dynamics, and the experimental results obtained using the developed microfluidic setup over a wide range of capillary numbers. Our results show that the proposed numerical model recovers very well the experimentally observed flow dynamics in terms of phase distribution patterns and inlet pressures, but also the effects of viscous flow on the apparent (i.e. dynamic) contact angles in the vicinity of the pore walls. For the first time in the literature, this work clearly shows that the proposed numerical approach has an undoubtable strong potential to simulate multiphase flow in porous domains over a wide range of Capillary numbers.

3.
Langmuir ; 35(22): 7322-7331, 2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31034232

ABSTRACT

Multiphase flow through porous media is important in a wide range of environmental applications such as enhanced oil recovery and geologic storage of CO2. Recent in situ observations of the three-phase contact line between immiscible fluid phases and solid surfaces suggest that existing models may not fully capture the effects of nanoscale surface textures, impacting flow prediction. To better characterize the role of surface roughness in these systems, spontaneous and forced imbibition experiments were carried out using glass capillaries with modified surface roughness or wettability. Dynamic contact angle and interfacial speed deviation, both resulting from stick-slip flow conditions, were measured to understand the impact these microscale dynamics would have on macroscale flow processes. A 2 k factorial experimental design was used to test the ways in which the dynamic contact angle was impacted by the solid surface properties (e.g., wettability, roughness), ionic strength in the aqueous phase, nonaqueous fluid type (water/Fluorinert and water/dodecane), and the presence/absence of a wetting film prior to the imbibition of the wetting phase. The analysis of variance of spontaneous imbibition results suggests that surface roughness and ionic strength play important roles in controlling dynamic contact angle in porous media, more than other factors tested here. The presence of a water film alone does not affect dynamic contact angle, but its interactions with surface roughness and aqueous chemistry have a statistically significant effect. Both forced imbibition and spontaneous imbibition experiments suggest that nanoscale textures can have a larger impact on flow dynamics than chemical wettability. These experimental results are used to extend the Joos and Wenzel equations relating apparent static and dynamic contact angles to roughness, presence of a water film, and water chemistry. The new empirical equation improves prediction accuracy by taking water film and aqueous chemistry into account, reducing error by up to 50%.

4.
Sci Rep ; 8(1): 13228, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185879

ABSTRACT

Understanding the mobilisation of trapped globules of non-wetting phase during two-phase flow has been the aim of numerous studies. However, the driving forces for the mobilisation of the trapped phases are still not well understood. Also, there is little information about what happens within a globule before, at the onset and during mobilization. In this work, we used micro-particle tracking velocimetry in a micro-fluidic model in order to visualise the velocity distributions inside the trapped phase globules prior and during mobilisation. Therefore, time-averaged and instantaneous velocity vectors have been determined using fluorescent microscopy. As a porous medium, we used a polydimethylsiloxane (PDMS) micro-model with a well-defined pore structure, where drainage and imbibition experiments were conducted. Three different geometries of trapped non-wetting globules, namely droplets, blobs and ganglia were investigated. We observed internal circulations inside the trapped phase globules, leading to the formation of vortices. The direction of circulating flow within a globule is dictated by the drag force exerted on it by the flowing wetting phase. This is illustrated by calculating and analyzing the drag force (per unit area) along fluid-fluid interfaces. In the case of droplets and blobs, only one vortex is formed. The flow field within a ganglion is much more complex and more vortices can be formed. The circulation velocities are largest at the fluid-fluid interfaces, along which the wetting phase flows and decreases towards the middle of the globule. The circulation velocities increased proportionally with the increase of wetting phase average velocity (or capillary number). The vortices remain stable as long as the globules are trapped, start to change at the onset of mobilization and disappear during the movement of globules. They reappear when the globules get stranded. Droplets are less prone to mobilization; blobs get mobilised in whole; while ganglia may get ruptured and get mobilised only partially.


Subject(s)
Dimethylpolysiloxanes/chemistry , Computer Simulation , Microfluidics , Microscopy, Fluorescence , Models, Chemical , Phase Transition , Porosity , Rheology , Wettability
5.
Transp Porous Media ; 122(1): 221-234, 2018.
Article in English | MEDLINE | ID: mdl-31258227

ABSTRACT

The measurement of fluid pressure inside pores is a major challenge in experimental studies of two-phase flow in porous media. In this paper, we describe the manufacturing procedure of a micro-model with integrated fibre optic pressure sensors. They have a circular measurement window with a diameter of 260  µ m , which enables the measurement of pressure at the pore scale. As a porous medium, we used a PDMS micro-model with known physical and surface properties. A given pore geometry was produced following a procedure we had developed earlier. We explain the technology behind fibre optic pressure sensors and the procedure for integrating these sensors into a micro-model and demonstrate their utility for the measurement of pore pressure under transient two-phase flow conditions. Finally, we present and analyse results of single and two-phase flow experiments performed in the micro-model and discuss the link between small-scale fast pressure changes with pore-scale events.

SELECTION OF CITATIONS
SEARCH DETAIL
...