Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Prikl Biokhim Mikrobiol ; 40(6): 649-53, 2004.
Article in Russian | MEDLINE | ID: mdl-15609855

ABSTRACT

The efficiency of an oil-oxidizing microbial community in the bioremediation of oil-polluted soil was studied under laboratory conditions. A specific feature of the community was its ability to oxidize oil hydrocarbons under both aerobic and anoxic conditions. The degree of oil-hydrocarbon degradation in various bioremediation modes increased as follows: self-remediation (40%) < nitrate application (42%) < introduction of the denitrifying oil-oxidizing community (50%) < introduction of the denitrifying oil-oxidizing community plus nitrate application (60%). The intensification of bioremediation is related to the increase in the population of the hydrocarbon-oxidizing microorganisms, first of all, denitrifying ones, resulting from the introduction of the community.


Subject(s)
Hydrocarbons/metabolism , Nitrites/chemistry , Petroleum , Soil Microbiology , Soil Pollutants/isolation & purification
2.
Curr Microbiol ; 36(1): 45-54, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9405746

ABSTRACT

2,4,6-Trinitrotoluene (TNT), a toxic nitroaromatic explosive, accumulates in the environment, making necessary the remediation of contaminated areas and unused materials. Although bioremediation has been utilized to detoxify TNT, the metabolic processes involved in the metabolism of TNT have proven to be complex. The three aerobic bacterial strains reported here (Pseudomonas aeruginosa, Bacillus sp. , and Staphylococcus sp.) differ in their ability to biotransform TNT and in their growth characteristics in the presence of TNT. In addition, enzymatic activities have been identified that differ in the reduction of nitro groups, cofactor preferences, and the ability to eliminate-NO2 from the ring. The Bacillus sp. has the most diverse bioremediation potential owing to its growth in the presence of TNT, high level of reductive ability, and capability of removing-NO2 from the nitroaromatic ring.


Subject(s)
Bacteria, Aerobic/metabolism , Trinitrotoluene/pharmacokinetics , Biodegradation, Environmental , Biotransformation , NADP/metabolism , Nitrites/metabolism
3.
Mikrobiologiia ; 55(6): 918-23, 1986.
Article in Russian | MEDLINE | ID: mdl-3821594

ABSTRACT

The regulation of terephthalate catabolism was studied in Rhodococcus rubropertinctus which decomposed this synthetic monomer. The pathway (a) of terephthalate (TP) catabolism is as follows: TP----benzoate----4-hydroxybenzoate----protocatechuate----pyrocatechol-- --cycle ortho-cleavage. The following results were obtained when studying why two other catabolic pathways were realized if benzoate and 4-hydroxybenzoate were taken as a sole carbon source, namely, (b) benzoate----pyrocatechol----cycle cleavage and (c) 4-hydroxybenzoate----protocatechuate----cycle cleavage. TP seemed to cause the divergence of pathways (a) and (b) by repressing the system of benzoate oxidation to pyrocatechol. In pathway (c), benzoate repressed the synthesis of enzymes which catalysed protocatechuate oxidation. Pathway (b) was switched over to (a) when the strain was grown in a medium containing TP and benzoate at a benzoate concentration above 5 mM. Here, the concentration of benzoate (first exogenous and later formed from TP) played a key role. R. rubropertinctus growth in a medium with TP and glucose had diauxic characteristics.


Subject(s)
Phthalic Acids/metabolism , Rhodococcus/metabolism , Biodegradation, Environmental , Enzyme Induction , Kinetics , Oxidation-Reduction , Rhodococcus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...