Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 30(1): 121-30, 2001.
Article in English | MEDLINE | ID: mdl-11215643

ABSTRACT

The photochemical degradation of herbicides belonging to different chemical groups has been investigated in different types of natural waters (ground, river, lake, marine) and distilled water as well as in soils with different texture and composition. Studied herbicides and chemical groups included atrazine, propazine, and prometryne (s-triazines); propachlor and propanil (acetanilides); and molinate (thiocarbamate). The degradation kinetics were monitored under natural conditions of sunlight and temperature. Photodegradation experiments were performed in May through July 1998 at low concentrations in water samples (2-10 mg/L) and soil samples (5-20 mg/kg), which are close to usual field dosage. The photodegradation rates of all studied herbicides in different natural waters followed a pseudo-first order kinetics. The half-lives of the selected herbicides varied from 26 to 73 calendar days in waters and from 12 to 40 d in soil surfaces, showing that the degradation process depends on the constitution of the irradiated media. The presence of humic substances in the lake, river, and marine water samples reduces degradation rates in comparison with the distilled and ground water. On the contrary, the degradation in soil is accelerated as the percentage of organic matter increases. Generally, the photodegradation process in soil is faster than in water. The major photodegradation products identified by using gas chromatography-mass spectrometry (GC-MS) techniques were the hydroxy and dealkylated derivatives for s-triazines, the dechlorinated and hydroxy derivative for the anilides, and the keto-derivative for the thiocarbamate, indicating a similar mode of degradation for each chemical category.


Subject(s)
Herbicides/pharmacokinetics , Soil Pollutants/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics , Gas Chromatography-Mass Spectrometry , Half-Life , Light , Organic Chemicals , Photochemistry
2.
J Org Chem ; 64(6): 1925-1931, 1999 Mar 19.
Article in English | MEDLINE | ID: mdl-11674284

ABSTRACT

Increased phenylation in the molecular series PhCH(2)NHPh (1), Ph(2)CHNHPh (2), and Ph(3)CNHPh(3) has two important consequences on the photophysical/photochemical behavior: (i) decrease in the fluorescence quantum yields (cyclohexane), Phi(f) = 0.115, 0.063, 0.001 (lambda(exc) = 254 nm) and 0.164, 0.089, 0.019 (lambda(exc) = 290 nm), respectively, and (ii) increase in the quantum yield (MeCN) of the photodissociation products PhCH(2)(*), Ph(2)CH(*), and Ph(3)C(*), Phi(radical) = 0.16, 0.25, 0.65 (lambda(exc) = 248 nm) and (not measured), 0.18, 0.29 (lambda(exc) = 308 nm), respectively. As the C-N bond progressively weakens in the series 1, 2, 3 (bond dissociation enthalpy: 52, 48, 39 kcal/mol, respectively), the C-N fission channel becomes obviously more favorable and competes effectively with fluorescence. The involved intermediates PhCH(2)(*), Ph(2)CH(*), Ph(3)C(*), and PhNH(*) were identified using laser flash photolysis (248 and 308 nm). Product analysis (lamp irradiation) gives as main products aniline and (i) 1,1-diphenylethane and o- and p-benzylaniline for 1, (ii) 1,1,2,2-tetraphenylethane for 2, (iii) Ph(3)CH and 9-Ph-fluorene for 3; all these compounds are formed from the above radicals through coupling or H-abstraction reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...