Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36993667

ABSTRACT

Oxford Nanopore Technologies (ONT) allows direct sequencing of ribonucleic acids (RNA) and, in addition, detection of possible RNA modifications due to deviations from the expected ONT signal. The software available so far for this purpose can only detect a small number of modifications. Alternatively, two samples can be compared for different RNA modifications. We present Magnipore, a novel tool to search for significant signal shifts between samples of Oxford Nanopore data from similar or related species. Magnipore classifies them into mutations and potential modifications. We use Magnipore to compare SARS-CoV-2 samples. Included were representatives of the early 2020s Pango lineages (n=6), samples from Pango lineages B.1.1.7 (n=2, Alpha), B.1.617.2 (n=1, Delta), and B.1.529 (n=7, Omicron). Magnipore utilizes position-wise Gaussian distribution models and a comprehensible significance threshold to find differential signals. In the case of Alpha and Delta, Magnipore identifies 55 detected mutations and 15 sites that hint at differential modifications. We predicted potential virus-variant and variant-group-specific differential modifications. Magnipore contributes to advancing RNA modification analysis in the context of viruses and virus variants.

2.
BMC Genomics ; 24(1): 151, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973643

ABSTRACT

BACKGROUND: Most plant-pathogenic Xanthomonas bacteria harbor transcription activator-like effector (TALE) genes, which function as transcriptional activators of host plant genes and support infection. The entire repertoire of up to 29 TALE genes of a Xanthomonas strain is also referred to as TALome. The DNA-binding domain of TALEs is comprised of highly conserved repeats and TALE genes often occur in gene clusters, which precludes the assembly of TALE-carrying Xanthomonas genomes based on standard sequencing approaches. RESULTS: Here, we report the successful assembly of the 5 Mbp genomes of five Xanthomonas strains from Oxford Nanopore Technologies (ONT) sequencing data. For one of these strains, Xanthomonas oryzae pv. oryzae (Xoo) PXO35, we illustrate why Illumina short reads and longer PacBio reads are insufficient to fully resolve the genome. While ONT reads are perfectly suited to yield highly contiguous genomes, they suffer from a specific error profile within homopolymers. To still yield complete and correct TALomes from ONT assemblies, we present a computational correction pipeline specifically tailored to TALE genes, which yields at least comparable accuracy as Illumina-based polishing. We further systematically assess the ONT-based pipeline for its multiplexing capacity and find that, combined with computational correction, the complete TALome of Xoo PXO35 could have been reconstructed from less than 20,000 ONT reads. CONCLUSIONS: Our results indicate that multiplexed ONT sequencing combined with a computational correction of TALE genes constitutes a highly capable tool for characterizing the TALomes of huge collections of Xanthomonas strains in the future.


Subject(s)
Nanopore Sequencing , Xanthomonas , Transcription Activator-Like Effectors/genetics , Xanthomonas/genetics , Genome
3.
Cells ; 11(9)2022 05 09.
Article in English | MEDLINE | ID: mdl-35563893

ABSTRACT

Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.


Subject(s)
Extracellular Vesicles , MicroRNAs , Extracellular Vesicles/metabolism , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , Pregnancy , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Trophoblasts/metabolism
4.
Autophagy ; 17(11): 3690-3706, 2021 11.
Article in English | MEDLINE | ID: mdl-33618608

ABSTRACT

Hereditary spastic paraplegia (HSP) denotes genetically heterogeneous disorders characterized by leg spasticity due to degeneration of corticospinal axons. SPG11 and SPG15 have a similar clinical course and together are the most prevalent autosomal recessive HSP entity. The respective proteins play a role for macroautophagy/autophagy and autophagic lysosome reformation (ALR). Here, we report that spg11 and zfyve26 KO mice developed motor impairments within the same course of time. This correlated with enhanced accumulation of autofluorescent material in neurons and progressive neuron loss. In agreement with defective ALR, tubulation events were diminished in starved KO mouse embryonic fibroblasts (MEFs) and lysosomes decreased in neurons of KO brain sections. Confirming that both proteins act in the same molecular pathway, the pathologies were not aggravated upon simultaneous disruption of both. We further show that PI4K2A (phosphatidylinositol 4-kinase type 2 alpha), which phosphorylates phosphatidylinositol to phosphatidylinositol-4-phosphate (PtdIns4P), accumulated in autofluorescent deposits isolated from KO but not WT brains. Elevated PI4K2A abundance was already found at autolysosomes of neurons of presymptomatic KO mice. Immunolabelings further suggested higher levels of PtdIns4P at LAMP1-positive structures in starved KO MEFs. An increased association with LAMP1-positive structures was also observed for clathrin and DNM2/dynamin 2, which are important effectors of ALR recruited by phospholipids. Because PI4K2A overexpression impaired ALR, while its knockdown increased tubulation, we conclude that PI4K2A modulates phosphoinositide levels at autolysosomes and thus the recruitment of downstream effectors of ALR. Therefore, PI4K2A may play an important role in the pathogenesis of SPG11 and SPG15.Abbreviations: ALR: autophagic lysosome reformation; AP-5: adaptor protein complex 5; BFP: blue fluorescent protein; dKO: double knockout; EBSS: Earle's balanced salt solution; FBA: foot base angle; GFP: green fluorescent protein; HSP: hereditary spastic paraplegia; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; SQSTM1/p62: sequestosome 1; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RFP: red fluorescent protein; SPG: spastic paraplegia gene; TGN: trans-Golgi network; WT: wild type.


Subject(s)
Autophagy , Lysosomes/metabolism , Minor Histocompatibility Antigens/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Spastic Paraplegia, Hereditary/metabolism , Animals , Blotting, Western , Disease Models, Animal , Flow Cytometry , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/physiology , Phosphotransferases (Alcohol Group Acceptor)/physiology , Proteins/metabolism , Spastic Paraplegia, Hereditary/pathology
5.
Saudi Med J ; 38(12): 1190-1195, 2017 12.
Article in English | MEDLINE | ID: mdl-29209666

ABSTRACT

OBJECTIVES: To identify the underlying gene mutation in a large consanguineous Pakistani family.  Methods: This is an observational descriptive study carried out at the Department of Biochemistry, Shifa International Hospital, Quaid-i-Azam University, and Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan from 2013-2016. Genomic DNA of all recruited family members was extracted and the Trusight one sequencing panel was used to assess genes associated with a neuro-muscular phenotype. Comparative modeling of mutated and wild-type protein was carried out by PyMOL tool.  Results: Clinical investigations of an affected individual showed typical features of Miyoshi myopathy (MM) like elevated serum creatine kinase (CK) levels, distal muscle weakness, myopathic changes in electromyography (EMG) and muscle histopathology. Sequencing with the Ilumina Trusight one sequencing panel revealed a novel 22 nucleotide duplication (CTTCAACTTGTTTGACTCTCCT) in the DYSF gene (NM_001130987.1_c.897-918dup; p.Gly307Leufs5X), which results in a truncating frameshift mutation and perfectly segregated with the disease in this family. Protein modeling studies suggested a disruption in spatial configuration of the putative mutant protein.  Conclusion: A novel duplication of 22 bases (c.897_918dup; p.Gly307Leufs5X) in the DYSF gene was identified in a family suffering from Miyoshi myopathy. Protein homology analysis proposes a disruptive impact of this mutation on protein function.


Subject(s)
Distal Myopathies/genetics , Dysferlin/genetics , Gene Duplication , Muscular Atrophy/genetics , Mutation , Adult , Female , Humans , Male , Pakistan , Pedigree , Young Adult
6.
Parkinsonism Relat Disord ; 21(10): 1256-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297380

ABSTRACT

BACKGROUND: In addition to the most frequent TOR1A/DYT1 mutation (c.907_909delGAG), a growing number of TOR1A sequence variants are found in dystonia patients. For most, functional characterization has demonstrated pathogenicity at different levels, implying that TOR1A genetic testing should not be limited to screening for c.907_909delGAG. METHODS: We tested 461 Serbian patients with isolated or combined dystonia for changes in the TOR1A gene and performed a systematic literature review of the clinical characteristics of patients carrying TOR1A mutations other than c.907_909delGAG. RESULTS: One likely pathogenic TOR1A mutation (c.385G>A, p.Val129Ile) was detected in an adult-onset cervical dystonia patient. This change is in proximity to the previously reported p.Glu121Lys mutation and predicted to decrease the stability of TOR1A-encoded protein TorsinA. CONCLUSIONS: Our patient and three other reported carriers of non-c.907_909delGAG-mutations within the first three exons of TOR1A showed similar phenotypes of adult-onset focal or segmental cervical dystonia. This observation raises the possibility of genotype-phenotype correlations in DYT1 and indicates that the clinical spectrum of this type of dystonia might be broader then previous classic descriptions.


Subject(s)
Dystonic Disorders/genetics , Molecular Chaperones/genetics , Mutation , Adolescent , Adult , Aged , Base Sequence , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Association Studies , Genotype , Humans , Male , Middle Aged , Molecular Sequence Data , Pedigree , Phenotype , Serbia , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...