Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Malar J ; 23(1): 37, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291392

ABSTRACT

BACKGROUND: A major challenge to malaria elimination is identifying and targeting populations that are harbouring residual infections and contributing to persistent transmission. In many near-elimination settings in Southeast Asia, it is known that forest-goers are at higher risk for malaria infection, but detailed information on their behaviours and exposures is not available. METHODS: In Aceh Province, Indonesia, a near-elimination setting where a growing proportion of malaria is due to Plasmodium knowlesi, a case-control study was conducted to identify risk factors for symptomatic malaria, characteristics of forest-goers, and key intervention points. From April 2017 to September 2018, cases and controls were recruited and enrolled in a 1:3 ratio. Cases had confirmed malaria infection by rapid diagnostic test or microscopy detected at a health facility (HF). Gender-matched controls were recruited from passive case detection among individuals with suspected malaria who tested negative at a health facility (HF controls), and community-matched controls were recruited among those testing negative during active case detection. Multivariable logistic regression (unconditional for HF controls and conditional for community controls) was used to identify risk factors for symptomatic malaria infection. RESULTS: There were 45 cases, of which 27 were P. knowlesi, 17 were Plasmodium vivax, and one was not determined. For controls, 509 and 599 participants were recruited from health facilities and the community, respectively. Forest exposures were associated with high odds of malaria; in particular, working and sleeping in the forest (HF controls: adjusted odds ratio (aOR) 21.66, 95% CI 5.09-92.26; community controls: aOR 16.78, 95% CI 2.19-128.7) and having a second residence in the forest (aOR 6.29, 95% CI 2.29-17.31 and 13.53, 95% CI 2.10-87.12). Male forest-goers were a diverse population employed in a variety of occupations including logging, farming, and mining, sleeping in settings, such as huts, tents, and barracks, and working in a wide range of group sizes. Reported use of protective measures, such as nets, hammock nets, mosquito coils, and repellents was low among forest-goers and interventions at forest residences were absent. CONCLUSIONS: Second residences in the forest and gaps in use of protective measures point to key malaria interventions to improve coverage in forest-going populations at risk for P. knowlesi and P. vivax in Aceh, Indonesia. Intensified strategies tailored to specific sub-populations will be essential to achieve elimination.


Subject(s)
Malaria, Vivax , Malaria , Male , Humans , Indonesia/epidemiology , Case-Control Studies , Malaria/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Forests
2.
Malar J ; 19(1): 441, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33256743

ABSTRACT

BACKGROUND: Following a dramatic decline of malaria cases in Aceh province, geographically-based reactive case detection (RACD) was recently evaluated as a tool to improve surveillance with the goal of malaria elimination. While RACD detected few cases in households surrounding index cases, engaging in forest work was identified as a risk factor for malaria and infections from Plasmodium knowlesi-a non-human primate malaria parasite-were more common than expected. This qualitative formative assessment was conducted to improve understanding of malaria risk from forest work and identify strategies for targeted surveillance among forest workers, including adapting reactive case detection. METHODS: Between June and August, 2016, five focus groups and 18 in-depth interviews with forest workers and key informants were conducted in each of four subdistricts in Aceh Besar and Aceh Jaya districts. Themes included: types of forest activities, mobility of workers, interactions with non-human primates, malaria prevention and treatment-seeking behaviours, and willingness to participate in malaria surveys at forest work sites and using peer-referral. RESULTS: Reported forest activities included mining, logging, and agriculture in the deep forest and along the forest fringe. Forest workers, particularly miners and loggers, described often spending weeks to months at work sites in makeshift housing, rarely utilizing mosquito prevention and, upon fever, self-medicating and seeking care from traditional healers or pharmacies rather than health facilities. Non-human primates are frequently observed near work sites, and most forest work locations are within a day's journey of health clinics. Employers and workers expressed interest in undertaking malaria testing and in participating in survey recruitment by peer-referral and at work sites. CONCLUSIONS: Diverse groups of forest workers in Aceh are potentially exposed to malaria through forest work. Passive surveillance and household-based screening may under-estimate malaria burden due to extended stays in the forest and health-seeking behaviours. Adapting active surveillance to specifically target forest workers through work-site screening and/or peer-referral appears promising for addressing currently undetected infections.


Subject(s)
Forestry , Malaria/epidemiology , Occupational Diseases/epidemiology , Patient Acceptance of Health Care/statistics & numerical data , Plasmodium knowlesi/isolation & purification , Adult , Female , Humans , Incidence , Indonesia/epidemiology , Malaria/parasitology , Malaria/psychology , Male , Middle Aged , Occupational Diseases/parasitology , Occupational Diseases/psychology , Plasmodium/isolation & purification , Risk Factors , Young Adult
3.
PLoS Negl Trop Dis ; 12(11): e0006924, 2018 11.
Article in English | MEDLINE | ID: mdl-30500828

ABSTRACT

The discovery of the life-threatening zoonotic infection Plasmodium knowlesi has added to the challenges of prompt and accurate malaria diagnosis and surveillance. In this study from Aceh Province, Indonesia, a malaria elimination setting where P. knowlesi endemicity was not previously known, we report the laboratory investigation and difficulties encountered when using molecular detection methods for quality assurance of microscopically identified clinical cases. From 2014 to 2015, 20 (49%) P. falciparum, 16 (39%) P. vivax, 3 (7%) P. malariae, and 2 (5%) indeterminate species were identified by microscopy from four sentinel health facilities. At a provincial-level reference laboratory, loop-mediated isothermal amplification (LAMP), a field-friendly molecular method, was performed and confirmed Plasmodium in all samples though further species-identification was limited by the unavailability of non-falciparum species-specific testing with the platform used. At a national reference laboratory, several molecular methods including nested PCR (nPCR) targeting the 18 small sub-unit (18S) ribosomal RNA, nPCR targeting the cytochrome-b (cytb) gene, a P. knowlesi-specific nPCR, and finally sequencing, were necessary to ultimately classify the samples as: 19 (46%) P. knowlesi, 8 (20%) P. falciparum, 14 (34%) P. vivax. Microscopy was unable to identify or mis-classified up to 56% of confirmed cases, including all cases of P. knowlesi. With the nPCR methods targeting the four human-only species, P. knowlesi was missed (18S rRNA method) or showed cross-reactivity for P. vivax (cytb method). To facilitate diagnosis and management of potentially fatal P. knowlesi infection and surveillance for elimination of human-only malaria in Indonesia and other affected settings, new detection methods are needed for testing at the point-of-care and in local reference laboratories.


Subject(s)
Malaria/parasitology , Plasmodium knowlesi/isolation & purification , Plasmodium/isolation & purification , Disease Eradication , Humans , Indonesia/epidemiology , Laboratories , Malaria/epidemiology , Malaria/prevention & control , Nucleic Acid Amplification Techniques , Plasmodium/classification , Plasmodium/genetics , Plasmodium knowlesi/classification , Plasmodium knowlesi/genetics , Polymerase Chain Reaction
4.
Malar J ; 17(1): 220, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29859081

ABSTRACT

BACKGROUND: Reactive case detection (RACD) is an active case finding strategy where households and neighbours of a passively identified case (index case) are screened to identify and treat additional malaria infections with the goal of gathering surveillance information and potentially reducing further transmission. Although it is widely considered a key strategy in low burden settings, little is known about the costs and the cost-effectiveness of different diagnostic methods used for RACD. The aims of this study were to measure the cost of conducting RACD and compare the cost-effectiveness of microscopy to the more sensitive diagnostic method loop-mediated isothermal amplification (LAMP). METHODS: The study was conducted in RACD surveillance sites in five sub-districts in Aceh Besar, Indonesia. The cost inputs and yield of implementing RACD with microscopy and/or LAMP were collected prospectively over a 20 months study period between May 2014 and December 2015. Costs and cost-effectiveness (USD) of the different strategies were examined. The main cost measures were cost per RACD event, per person screened, per population at risk (PAR); defined as total population in each sub-district, and per infection found. The main cost-effectiveness measure was incremental cost-effectiveness ratio (ICER), expressed as cost per malaria infection detected by LAMP versus microscopy. The effects of varying test positivity rate or diagnostic yield on cost per infection identified and ICER were also assessed. RESULTS: Among 1495 household members and neighbours screened in 36 RACD events, two infections were detected by microscopy and confirmed by LAMP, and four infections were missed by microscopy but detected by LAMP. The average total cost of conducting RACD using microscopy and LAMP was $1178 per event with LAMP-specific consumables and personnel being the main cost drivers. The average cost of screening one individual during RACD was $11, with an additional cost of diagnostics at $0.62 and $16 per person for microscopy and LAMP, respectively. As a public health intervention, RACD using both diagnostics cost an average of $0.42 per PAR per year. Comparing RACD using microscopy only versus RACD using LAMP only, the cost per infection found was $8930 and $6915, respectively. To add LAMP as an additional intervention accompanying RACD would cost $9 per individual screened annually in this setting. The ICER was estimated to be $5907 per additional malaria infection detected by LAMP versus microscopy. Cost per infection identified and ICER declined with increasing test positivity rate and increasing diagnostic yield. CONCLUSIONS: This study provides the first estimates on the cost and cost-effectiveness of RACD from a low transmission setting. Costs per individual screened were high, though costs per PAR were low. Compared to microscopy, the use of LAMP in RACD was more costly but more cost-effective for the detection of infections, with diminishing returns observed when findings were extrapolated to scenarios with higher prevalence of infection using more sensitive diagnostics. As malaria programmes consider active case detection and the integration of more sensitive diagnostics, these findings may inform strategic and budgetary planning.


Subject(s)
Diagnostic Tests, Routine/economics , Diagnostic Tests, Routine/methods , Malaria/diagnosis , Plasmodium/isolation & purification , Cost-Benefit Analysis , Humans , Indonesia , Malaria/transmission , Microscopy/economics , Microscopy/methods , Nucleic Acid Amplification Techniques/economics , Nucleic Acid Amplification Techniques/methods , Plasmodium/classification
5.
Malar J ; 15: 468, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27619000

ABSTRACT

BACKGROUND: As malaria transmission declines, it becomes more geographically focused and more likely due to asymptomatic and non-falciparum infections. To inform malaria elimination planning in the context of this changing epidemiology, local assessments on the risk factors for malaria infection are necessary, yet challenging due to the low number of malaria cases. METHODS: A population-based, cross-sectional study was performed using passive and active surveillance data collected in Aceh Besar District, Indonesia from 2014 to 2015. Malaria infection was defined as symptomatic polymerase chain reaction (PCR)-confirmed infection in index cases reported from health facilities, and asymptomatic or symptomatic PCR-confirmed infection identified in reactive case detection (RACD). Potential risk factors for any infection, species-specific infection, or secondary-case detection in RACD were assessed through questionnaires and evaluated for associations. RESULTS: Nineteen Plasmodium knowlesi, 12 Plasmodium vivax and six Plasmodium falciparum cases were identified passively, and 1495 community members screened in RACD, of which six secondary cases were detected (one P. knowlesi, three P. vivax, and two P. falciparum, with four being asymptomatic). Compared to non-infected subjects screened in RACD, cases identified through passive or active surveillance were more likely to be male (AOR 12.5, 95 % CI 3.0-52.1), adult (AOR 14.0, 95 % CI 2.2-89.6 for age 16-45 years compared to <15 years), have visited the forest in the previous month for any reason (AOR 5.6, 95 % CI 1.3-24.2), and have a workplace near or in the forest and requiring overnight stays (AOR 7.9, 95 % CI 1.6-39.7 compared to workplace not near or in the forest). Comparing subjects with infections of different species, differences were observed in sub-district of residence and other demographic and behavioural factors. Among subjects screened in RACD, cases compared to non-cases were more likely to be febrile and reside within 100 m of the index case. CONCLUSION: In this setting, risk of malaria infection in index and RACD identified cases was associated with forest exposure, particularly overnights in the forest for work. In low-transmission settings, utilization of data available through routine passive and active surveillance can support efforts to target individuals at high risk.


Subject(s)
Malaria/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium knowlesi/isolation & purification , Plasmodium vivax/isolation & purification , Adolescent , Adult , Aged , Child , Cross-Sectional Studies , Epidemiological Monitoring , Female , Humans , Indonesia/epidemiology , Malaria/parasitology , Male , Middle Aged , Polymerase Chain Reaction , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...