Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 894: 164931, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37343889

ABSTRACT

Land use change threatens aquatic ecosystems through freshwater salinization and sediment pollution. Effective river management requires an understanding of the dominant hydrologic pathways of sediment and solute delivery. To address this, we applied hysteresis analysis, hydrograph separation, and linear regression to hundreds of events across a decade of specific conductance and turbidity data from three streams along a rural-to-urban gradient. Thereafter, we developed an index (ßrunoff') to quantify the relative influence of surface runoff to event-scale suspended sediment generation, where a value of '1' indicates complete alignment of suspended sediment generation with the temporal structure of runoff whereas '0' indicates total alignment with baseflow. Solute hysteresis results showed a predominance of dilution for the rural and mixed-use streams irrespective of road salt presence. On the other hand, urban stream behavior shifted from dilution to flushing following salt application, which was largely driven by greater runoff coefficients and the connectivity of distal solutes to the stream corridor. The newly developed index (ßrunoff') indicated that suspended sediment dynamics were more aligned with runoff in all three streams: rural stream (ßrunoff' = 0.70), mixed stream (ßrunoff' = 0.57), and urban stream (ßrunoff' = 0.64). The relative importance of baseflow to sediment generation grows slightly in urbanizing streams, as impervious surfaces disconnect upland sediment, which would otherwise transport with runoff, while piston-flow baseflow erodes exposed streambanks. Our findings emphasize the need to consider the impact of human modification of the landscape on solute and sediment transport in freshwater systems for effective water quality management. Further, our ßrunoff' index provides a useful tool for assessing the relative influence of surface runoff on event-scale solute or sediment generation in streams, supporting river management and conservation efforts.

2.
Environ Sci Technol ; 55(20): 13737-13748, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34582685

ABSTRACT

Storm events dominate sediment delivery to stream corridors, but the effects of anthropogenic disturbances on altering the sources, pathways, and timing of delivery remain uncertain. To address this knowledge gap, we analyzed 849 events from over a decade of high-frequency turbidity data across five watersheds in an urbanization gradient. Sensing results suggested that hysteresis patterns evolved with land use from clockwise (low-rural) to figure-eight (high-rural) to counter-clockwise (high-urban), indicating a disturbance-driven shift of sediment provenance from proximal to distal. Sediment loading pathways in the lowest-disturbance rural watershed were dominated by a single hysteresis shape (>90% of export by clockwise events), whereas the most-disturbed urban basin had the greatest variability in loading pathways (∼25% of export by clockwise, counter-clockwise, figure-eight, and complex events, respectively). Finally, wastewater treatment facilities modulated the release of "hungry-water" baseflow, causing more-rapid periods of high streamflow variance in catchments with a treatment facility (∼4 h period) than in those without (∼6 h period). Together, our results indicate that anthropogenic disturbances, including tile drainage, impervious surfaces, and roadway density, increase the connectivity of distally located sediment that would-in undisturbed basins-deposit along the sediment cascade. This information is important to watershed managers as they mitigate erosion in developing basins.


Subject(s)
Environmental Monitoring , Geologic Sediments , Rivers , Urbanization
3.
Sci Total Environ ; 764: 144255, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33385647

ABSTRACT

Erosion and connectivity are spatially varied processes key to determining sediment transport and delivery to downstream waterbodies. However, we find few studies that explicitly model the linkages of where erosion and connectivity coincide and where they contradict, particularly in urbanizing settings. In this study, we couple in-stream aquatic sensing, the Revised Universal Soil Loss Equation (RUSLE), the Index of Connectivity (IC), and the Sediment Delivery Ratio (SDR), together with Monte Carlo uncertainty analysis, to generate a new Erosion-Connectivity Mapping (ECM) framework. We evaluate ECM accuracy with field assessment of thirty-five sites spread across five lowland watersheds (mean slope <5°) in Johnson County, Kansas, USA, which differ primarily in their land use, ranging from 21% to 89% urban. RUSLE modeling results indicate erosion is controlled by topography with high risk areas near streambanks roadway systems. SDR and IC were positively related at the five sites (R2 = 0.78, p < 0.05) with the highest values in the most urbanized watershed, indicating that anthropogenic change augments connectivity. The ECM results indicate that while only 5±1% of the study area is both highly erodible and highly connected, these areas represent 37±4% of total watershed-scale erosion. Our modeling results indicate that erosion is more likely to be the limiting factor in sediment transport, as opposed to connectivity, as there are generally more locations that are well-connected to hydrologic transport but resistant to erosion. Our field assessment provided broad support for the ECMs; however, field assessment indicated that geospatial modeling underpredicts how closely related erosion and connectivity are in the field and we suggest that future models consider this coupling more explicitly. This study provides a method for combining RUSLE and IC in a new tool (ECM) to identify spatial patterns in sediment erosion-connectivity to aid in the understanding and management of watershed sedimentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...