Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(32): 20956-20965, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34423203

ABSTRACT

Defined surface functionalities can control the properties of a material. The layer-by-layer method is an experimentally simple yet very versatile method to coat a surface with nanoscale precision. The method is widely used to either control the chemical properties of the surface via the introduction of functional moieties bound to the polymer or create nanoscale surface topographies if one polymeric species is replaced by a colloidal dispersion. Such roughness can enhance the stability of a liquid film on top of the surface by capillary adhesion. Here, we investigate whether a similar effect allows an increased retention of liquid films within a porous surface and thus potentially increases the stability of ionic liquid films infused within a porous matrix in the supported ionic liquid-phase catalysis. The complex geometry of the porous material, long diffusion pathways, and small sizes of necks connecting individual pores all contribute to difficulties to reliably coat the required porous materials. We optimize the coating process to ensure uniform surface functionalization via two steps. Diffusion limitations are overcome by force-wetting the pores, which transports the functional species convectively into the materials. Electrostatic repulsion, which can limit pore accessibility, is mitigated by the addition of electrolytes to screen charges. We introduce nanoscale topography in microscale porous SiC monoliths to enhance the retention of an ionic liquid film. We use γ-Al2O3 to coat monoliths and test the retention of 1-butyl-2,3-dimethylimidazolium chloride under exposure to a continuous gas stream, a setup commonly used in the water-gas shift reaction. Our study showcases that a hierarchical topography can improve the stability of impregnated ionic liquid films, with a potential advantage of improved supported ionic liquid-phase catalysis.

2.
RSC Adv ; 10(65): 39580-39588, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-35515365

ABSTRACT

The most environmentally friendly protocol for obtaining mesoporous SiO2-TiO2 catalysts has been sought. Water has been employed as a green solvent, the energy input has been minimized, and three further principles (1, 3, and 12) of Green Chemistry have been considered. Four different modes for promoting the reaction have been comparatively evaluated, namely near-infrared and microwave electromagnetic irradiations, ultrasound, and traditional mantle heating. Brunauer-Emmett-Teller (BET) analyses of the catalysts produced revealed that the non-conventional activation modes afforded both large surface areas (335-441 m2 g-1) and smaller crystal sizes (7.2-15.3 nm) than the mantle heating process. These modes also generated the catalysts in shorter reaction times than traditional mantle heating, 10-30 min versus 3 h, with anatase as the sole crystalline phase. The photocatalytic degradation of 4-chlorophenol has been carried out to assess the catalytic efficiencies of the hybrid materials. The catalyst synthesized with microwave assistance showed the best mineralization activity (97%), followed by those prepared with ultrasound, near-infrared, and mantle heating. The materials have been extensively characterized by FTIR, XRD, DRS-UV/Vis, SEM, 29Si MAS NMR, and BET analyses. To the best of our knowledge, this is the first such comparative assessment of green energetic alternatives in developing a sol-gel process.

3.
Langmuir ; 34(23): 6894-6902, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29356538

ABSTRACT

In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.

4.
J Nat Prod ; 80(7): 1955-1963, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28704049

ABSTRACT

2,4-Diacetylphloroglucinol (DAPG) (1) is a phenolic polyketide produced by some plant-associated Pseudomonas species, with many biological activities and ecological functions. Here, we aimed at reconstructing the natural history of DAPG using phylogenomics focused at its biosynthetic gene cluster or phl genes. In addition to around 1500 publically available genomes, we obtained and analyzed the sequences of nine novel Pseudomonas endophytes isolated from the antidiabetic medicinal plant Piper auritum. We found that 29 organisms belonging to six Pseudomonas species contain the phl genes at different frequencies depending on the species. The evolution of the phl genes was then reconstructed, leading to at least two clades postulated to correlate with the known chemical diversity surrounding DAPG biosynthesis. Moreover, two of the newly obtained Pseudomonas endophytes with high antiglycation activity were shown to exert their inhibitory activity against the formation of advanced glycation end-products via DAPG and related congeners. Its isomer, 5-hydroxyferulic acid (2), detected during bioactivity-guided fractionation, together with other DAPG congeners, were found to enhance the detected inhibitory activity. This report provides evidence of a link between the evolution and chemical diversity of DAPG and congeners.


Subject(s)
Endophytes/chemistry , Phloroglucinol/analogs & derivatives , Piper/microbiology , Plants, Medicinal/microbiology , Polyketides/isolation & purification , Polyketides/pharmacology , Pseudomonas/chemistry , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Mexico , Molecular Structure , Multigene Family , Phloroglucinol/chemistry , Phloroglucinol/isolation & purification , Phloroglucinol/pharmacology , Piper/genetics , Plant Components, Aerial/chemistry , Plants, Medicinal/genetics , Polyketides/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...