Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Virulence ; 15(1): 2289769, 2024 12.
Article in English | MEDLINE | ID: mdl-38054753

ABSTRACT

Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Virulence , Acinetobacter baumannii/genetics , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Biofilms
2.
Antibiotics (Basel) ; 12(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136764

ABSTRACT

Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) remain a clinical challenge due to limited treatment options. Recently, cefiderocol, a novel siderophore cephalosporin, and sulbactam-durlobactam, a bactericidal ß-lactam-ß-lactamase inhibitor combination, have been approved by the Food and Drug Administration for the treatment of A. baumannii infections. In this review, we discuss the mechanisms of action of and resistance to cefiderocol and sulbactam-durlobactam, the antimicrobial susceptibility of A. baumannii isolates to these drugs, as well as the clinical effectiveness of cefiderocol and sulbactam/durlobactam-based regimens against CRAB. Overall, cefiderocol and sulbactam-durlobactam show an excellent antimicrobial activity against CRAB. The review of clinical studies evaluating the efficacy of cefiderocol therapy against CRAB indicates it is non-inferior to colistin/other treatments for CRAB infections, with a better safety profile. Combination treatment is not associated with improved outcomes compared to monotherapy. Higher mortality rates are often associated with prior patient comorbidities and the severity of the underlying infection. Regarding sulbactam-durlobactam, current data from the pivotal clinical trial and case reports suggest this antibiotic combination could be a valuable option in critically ill patients affected by CRAB infections, in particular where no other antibiotic appears to be effective.

3.
Front Microbiol ; 14: 1264030, 2023.
Article in English | MEDLINE | ID: mdl-37928684

ABSTRACT

Introduction: Non-baumannii Acinetobacter species are increasingly isolated in the clinical setting and the environment. The aim of the present study was to analyze a genome database of 837 Acinetobacter spp. isolates, which included 798 non-baumannii Acinetobacter genomes, in order to define the concordance of classification and discriminatory power of 7-gene MLST, 53-gene MLST, and single-nucleotide polymorphism (SNPs) phylogenies. Methods: Phylogenies were performed on Pasteur Multilocus Sequence Typing (MLST) or ribosomal Multilocus Sequence Typing (rMLST) concatenated alleles, or SNPs extracted from core genome alignment. Results: The Pasteur MLST scheme was able to identify and genotype 72 species in the Acinetobacter genus, with classification results concordant with the ribosomal MLST scheme. The discriminatory power and genotyping reliability of the Pasteur MLST scheme were assessed in comparison to genome-wide SNP phylogeny on 535 non-baumannii Acinetobacter genomes assigned to Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter seifertii, and Acinetobacter lactucae (heterotypic synonym of Acinetobacter dijkshoorniae), which were the most clinically relevant non-baumannii species of the A. baumannii group. The Pasteur MLST and SNP phylogenies were congruent at Robinson-Fould and Matching cluster tests and grouped genomes into four and three clusters in A. pittii, respectively, and one each in A. seifertii. Furthermore, A. lactucae genomes were grouped into one cluster within A. pittii genomes. The SNP phylogeny of A. nosocomialis genomes showed a heterogeneous population and did not correspond to the Pasteur MLST phylogeny, which identified two recombinant clusters. The antimicrobial resistance genes belonging to at least three different antimicrobial classes were identified in 91 isolates assigned to 17 distinct species in the Acinetobacter genus. Moreover, the presence of a class D oxacillinase, which is a naturally occurring enzyme in several Acinetobacter species, was found in 503 isolates assigned to 35 Acinetobacter species. Conclusion: In conclusion, Pasteur MLST phylogeny of non-baumannii Acinetobacter isolates coupled with in silico detection of antimicrobial resistance makes it important to study the population structure and epidemiology of Acinetobacter spp. isolates.

4.
Microorganisms ; 11(8)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37630461

ABSTRACT

The Enterobacterales order is a massive group of Gram-negative bacteria comprised of pathogenic and nonpathogenic members, including beneficial commensal gut microbiota. The pathogenic members produce several pathogenic or virulence factors that enhance their pathogenic properties and increase the severity of the infection. The members of Enterobacterales can also develop resistance against the common antimicrobial agents, a phenomenon called antimicrobial resistance (AMR). Many pathogenic Enterobacterales members are known to possess antimicrobial resistance. This review discusses the virulence factors, pathogenicity, and infections caused by multidrug-resistant Enterobacterales, especially E. coli and some other bacterial species sharing similarities with the Enterobacterales members. We also discuss both conventional and modern approaches used to combat the infections caused by them. Understanding the virulence factors produced by the pathogenic bacteria will help develop novel strategies and methods to treat infections caused by them.

5.
Antibiotics (Basel) ; 12(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37508229

ABSTRACT

The emergence of multidrug-resistance (MDR)-New Delhi metallo-beta-lactamase (NDM)-producing microorganisms-has become a serious concern for treating such infections. Therefore, we investigated the effective antimicrobial combinations against multidrug-resistant New Delhi metallo-beta-lactamase-producing strains of Enterobacterales. The tests were carried out using the 2D(two-dimensional) checkerboard method. Of 7 antimicrobials, i.e., doripenem (DRP), streptomycin (STR), cefoxitin (FOX), imipenem (IPM), cefotaxime (CTX), meropenem (MER), and gentamicin (GEN), 19 different combinations were used, and out of them, three combinations showed synergistic effects against 31 highly drug-resistant strains carrying blaNDM and other associated resistance markers. Changes in the minimum inhibitory concentration (MIC) values were interpreted using the test fractional inhibitory concentration index (FIC Index). The FIC Index values of these combinations were found in the range of 0.1562 to 0.5, which shows synergy, whereas no synergism was observed in the remaining antimicrobial combinations. We conclude that these antibiotic combinations can be analyzed in in vivo and pharmacological studies to establish an effective therapeutic approach.

6.
FEMS Microbes ; 4: xtad009, 2023.
Article in English | MEDLINE | ID: mdl-37333444

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Ab-web is a species-centric knowledge hub, initially with 10 articles organized into two main sections, 'Overview' and 'Topics', and three themes, 'epidemiology', 'antibiotic resistance', and 'virulence'. The 'workspace' section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas.

7.
Microorganisms ; 11(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36985153

ABSTRACT

Antimicrobial resistance and multidrug-resistant organisms currently constitute a severe public health problem [...].

8.
Microbiol Spectr ; 11(3): e0368822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36995224

ABSTRACT

Bacterial conjugation is one of the most abundant horizontal gene transfer (HGT) mechanisms, playing a fundamental role in prokaryote evolution. A better understanding of bacterial conjugation and its cross talk with the environment is needed for a more complete understanding of HGT mechanisms and to fight the dissemination of malicious genes between bacteria. Here, we studied the effect of outer space, microgravity, and additional key environmental cues on transfer (tra) gene expression and conjugation efficiency, using the under studied broad-host range plasmid pN3, as a model. High resolution scanning electron microscopy revealed the morphology of the pN3 conjugative pili and mating pair formation during conjugation. Using a nanosatellite carrying a miniaturized lab, we studied pN3 conjugation in outer space, and used qRT-PCR, Western blotting and mating assays to determine the effect of ground physicochemical parameters on tra gene expression and conjugation. We showed for the first time that bacterial conjugation can occur in outer space and on the ground, under microgravity-simulated conditions. Furthermore, we demonstrated that microgravity, liquid media, elevated temperature, nutrient depletion, high osmolarity and low oxygen significantly reduce pN3 conjugation. Interestingly, under some of these conditions we observed an inverse correlation between tra gene transcription and conjugation frequency and found that induction of at least traK and traL can negatively affect pN3 conjugation frequency in a dose-dependent manner. Collectively, these results uncover pN3 regulation by various environmental cues and highlight the diversity of conjugation systems and the different ways in which they may be regulated in response to abiotic signals. IMPORTANCE Bacterial conjugation is a highly ubiquitous and promiscuous process, by which a donor bacterium transfers a large portion of genetic material to a recipient cell. This mechanism of horizontal gene transfer plays an important role in bacterial evolution and in the ability of bacteria to acquire resistance to antimicrobial drugs and disinfectants. Bacterial conjugation is a complex and energy-consuming process, that is tightly regulated and largely affected by various environmental signals sensed by the bacterial cell. Comprehensive knowledge about bacterial conjugation and the ways it is affected by environmental cues is required to better understand bacterial ecology and evolution and to find new effective ways to counteract the threating dissemination of antibiotic resistance genes between bacterial populations. Moreover, characterizing this process under stress or suboptimal growth conditions such as elevated temperatures, high salinity or in the outer space, may provide insights relevant to future habitat environmental conditions.


Subject(s)
Conjugation, Genetic , Cues , Plasmids , Bacteria/genetics , Gene Transfer, Horizontal
10.
Antibiotics (Basel) ; 11(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35884215

ABSTRACT

The spread of microorganisms causing health-care associated infection (HAI) is contributed to by their intrinsic tolerance to a variety of biocides, used as antiseptics or disinfectants. The natural monomeric stilbenoid resveratrol (RV) is able to modulate the susceptibility to the chlorhexidine digluconate (CHX) biocide in Acinetobacter baumannii. In this study, a panel of reference strains and clinical isolates of Gram-negative bacteria, Gram-positive bacteria and yeasts were analyzed for susceptibility to CHX and benzalkonium chloride (BZK) and found to be tolerant to one or both biocides. The carbonyl cyanide m-chlorophenylhydrazine protonophore (CCCP) efflux pump inhibitor reduced the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CHX and BZK in the majority of strains. RV reduced dose-dependently MIC and MBC of CHX and BZK biocides when used as single agents or in combination in all analyzed strains, but not CHX MIC and MBC in Pseudomonas aeruginosa, Candida albicans, Klebsiella pneumoniae, Stenotrophomonas maltophilia and Burkholderia spp. strains. In conclusion, RV reverts tolerance and restores susceptibility to CHX and BZK in the majority of microorganisms responsible for HAI. These results indicates that the combination of RV, CHX and BZK may represent a useful strategy to maintain susceptibility to biocides in several nosocomial pathogens.

12.
Antibiotics (Basel) ; 10(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34827334

ABSTRACT

Invasive Candida infections have become a global public health problem due to the increase of Candida species resistant against antifungal therapeutics. The glucocorticoid PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) has antimicrobial activity against various bacterial taxa. Consequently, it might be considered for the treatment of Candida infections. The antifungal activity of PYED-1 was evaluated against several fungal strains that were representative of the five species that causes the majority of Candida infections-namely, Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis and Candida krusei. PYED-1 exhibited a weak antifungal activity and a fungistatic effect on all five Candida species. On the other hand, PYED-1 exhibited a good anti-biofilm activity, and was able to eradicate the preformed biofilms of all Candida species analyzed. Moreover, PYED-1 inhibited germ tube and hyphae formation of C. albicans and reduced adhesion of C. albicans to abiotic surfaces by up to 30%.

13.
Microorganisms ; 9(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205082

ABSTRACT

(1) Background: The aim of this study was to assess risk factors for multidrug-resistant/extensively drug-resistant (MDR/XDR) bacterial infections in heart transplant (HT) patients within three months after surgery and its impact on patient outcome. (2) Methods: Retrospective analysis of clinical, hemato-chemical, imaging, treatment and outcome data from 47 heart transplant recipients from January 2016 to December 2018. MDR/XDR infections were compared to non-MDR/XDR and noninfected patients. (3) Results: Most participants were males, median age 51 years: 35 (74.5%) developed an infection after HT; 14 (29.8%) were MDR/XDR infections. Prolonged hospital stay before HT correlated to MDR/XDR infection (p < 0.001). Sequential organ failure assessment (SOFA) score at sampling day was higher in MDR/XDR (p = 0.027). MDR/XDR were mostly blood-stream (BSI) (p = 0.043) and skin-soft tissue (SSTI) (p = 0.047) infections. Gram-negative infections were the most frequent, specifically carbapenem-resistant Klebsiella pneumoniae. Antibiotic therapy duration for MDR/XDR infections was longer (p = 0.057), eradication rate lower (p = 0.083) and hospital stay longer (p = 0.005) but not associated with a worse outcome. (4) Conclusions: MDR/XDR infections affect compromised HT recipients with a history of prolonged hospitalization, causing a lower rate of eradication and increased hospital stay. These frequently present as BSI and SSTI. We emphasize the need to prevent contamination of central venous catheters and the surgical site.

14.
Eur J Pediatr ; 180(3): 799-806, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32860099

ABSTRACT

Serial body site swabbing is used to monitor horizontal spread of aggressive bacterial species in the neonatal intensive care unit (NICU). Since colonization/carriage is thought to precede systemic infection, one might expect to retrieve colonizing pathogens from blood cultures. This hypothesis, however, has not been fully investigated in very low birth weight (VLBW) infants that are at high sepsis' risk. The primary outcome was, in a population of VLBW infants with late-onset sepsis, the matching between blood culture results and pathogens isolated from rectal and nose/pharyngeal surveillance swabs in the preceding 2 weeks. The secondary outcomes were the site of swabbing and time interval from colonization to blood culture positivity. Out of 333 VLBW neonates, 80 (24%) were diagnosed with bacterial sepsis. In 46 (57%) neonates, the blood culture showed the same pathogen species cultured from a swab. Of these, 30 were isolated from infants with both body sites colonized with an average time interval of 3.5 days; 2/16 were isolated from rectal swabs and 14 /16 from nose/pharyngeal samples.Conclusion: Our data show a fair correspondence between bacteria colonizing the nasopharynx and/or the rectum and pathogens later isolated from blood cultures. This association depends on the swabbing site, number of sites, and pathogen species. Although these data constitute valuable results, they are not sufficient for providing the sole base of a thoughtful clinical decision. What is Known: • Body site's colonization may precede systemic infection. • Little is known on this mechanism in VLBW infants that are at higher sepsis' risk. What is New: •Colonizing bacteria partially correspond to pathogens of blood cultures in VLBW infants with sepsis. • Correspondence depends on swabbing site, number of sites, and pathogen species.


Subject(s)
Blood Culture , Sepsis , Bacteria , Cross-Sectional Studies , Humans , Infant , Infant, Newborn , Infant, Very Low Birth Weight , Sepsis/diagnosis
15.
Front Microbiol ; 12: 790263, 2021.
Article in English | MEDLINE | ID: mdl-35197939

ABSTRACT

The management of infections caused by Acinetobacter baumannii is hindered by its intrinsic tolerance to a wide variety of biocides. The aim of the study was to analyze the role of different A. baumannii efflux pumps (EPs) in tolerance to chlorhexidine (CHX) and benzalkonium (BZK) and identify non-toxic compounds, which can restore susceptibility to CHX and BZK in A. baumannii. A. baumannii ATCC 19606 strain was tolerant to both CHX and BZK with MIC and MBC value of 32 mg/L. CHX subMIC concentrations increased the expression of adeB and adeJ (RND superfamily), aceI (PACE family) and amvA (MFS superfamily) EP genes. The values of CHX MIC and MBC decreased by eightfold in ΔadeB and twofold in ΔamvA or ΔaceI mutants, respectively, while not affected in ΔadeJ mutant; EPs double and triple deletion mutants showed an additive effect on CHX MIC. CHX susceptibility was restored in double and triple deletion mutants with inactivation of adeB gene. BZK MIC was decreased by fourfold in ΔadeB mutant, and twofold in ΔamvA and ΔaceI mutants, respectively; EPs double and triple deletion mutants showed an additive effect on BZK MIC. BZK susceptibility was recovered in ΔadeB ΔaceI ΔadeJ and ΔamvA ΔadeB ΔadeJ triple mutants. The structural comparison of AdeB and AdeJ protomers showed a more negatively charged entrance binding site and F-loop in AdeB, which may favor the transport of CHX. The carbonyl cyanide m-chlorophenylhydrazine protonophore (CCCP) EP inhibitor reduced dose-dependently CHX MIC in A. baumannii ATCC 19606 and in ΔadeJ, ΔaceI, or ΔamvA mutants, but not in ΔadeB mutant. Either piperine (PIP) or resveratrol (RV) at non-toxic concentrations inhibited CHX MIC in A. baumannii ATCC 19606 parental strain and EPs gene deletion mutants, and CHX-induced EP gene expression. Also, RV inhibited BZK MIC and EP genes expression in A. baumannii ATCC 19606 parental strain and EPs mutants. These results demonstrate that tolerance to CHX and BZK in A. baumannii is mediated by the activation of AdeB, AceI and AmvA EPs, AdeB playing a major role. Importantly, inhibition of EP genes expression by RV restores CHX and BZK susceptibility in A. baumannii.

17.
Antibiotics (Basel) ; 9(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604791

ABSTRACT

Staphylococcus aureus is one of the major causes of hospital- and community-associated bacterial infections throughout the world, which are difficult to treat due to the rising number of drug-resistant strains. New molecules displaying potent activity against this bacterium are urgently needed. In this study, d- and l-deoxynojirimycin (DNJ) and a small library of their N-alkyl derivatives were screened against S. aureus ATCC 29213, with the aim to identify novel candidates with inhibitory potential. Among them, N-nonyloxypentyl-l-DNJ (l-NPDNJ) proved to be the most active compound against S. aureus ATCC 29213 and its clinical isolates, with the minimum inhibitory concentration (MIC) value of 128 µg/mL. l-NPDNJ also displayed an additive effect with gentamicin and oxacillin against the gentamicin- and methicillin-resistant S. aureus isolate 00717. Sub-MIC values of l-NPDNJ affected S. aureus biofilm development in a dose-dependent manner, inducing a strong reduction in biofilm biomass. Moreover, real-time reverse transcriptase PCR analysis revealed that l-NPDNJ effectively inhibited at sub-MIC values the transcription of the spa, hla, hlb and sea virulence genes, as well as the agrA and saeR response regulator genes.

18.
Antibiotics (Basel) ; 9(5)2020 05 08.
Article in English | MEDLINE | ID: mdl-32397205

ABSTRACT

Pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1 (PYED-1), a heterocyclic corticosteroid derivative of deflazacort, exhibits broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria. Here, we investigated the effect of PYED-1 on the biofilms of Staphylococcus aureus, an etiological agent of biofilm-based chronic infections such as osteomyelitis, indwelling medical device infections, periodontitis, chronic wound infections, and endocarditis. PYED-1 caused a strong reduction in biofilm formation in a concentration dependent manner. Furthermore, it was also able to completely remove the preformed biofilm. Transcriptional analysis performed on the established biofilm revealed that PYED-1 downregulates the expression of genes related to quorum sensing (agrA, RNAIII, hld, psm, and sarA), surface proteins (clfB and fnbB), secreted toxins (hla, hlb, and lukD), and capsular polysaccharides (capC). The expression of genes that encode two main global regulators, sigB and saeR, was also significantly inhibited after treatment with PYED-1. In conclusion, PYED-1 not only effectively inhibited biofilm formation, but also eradicated preformed biofilms of S. aureus, modulating the expression of genes related to quorum sensing, surface and secreted proteins, and capsular polysaccharides. These results indicated that PYED-1 may have great potential as an effective antibiofilm agent to prevent S. aureus biofilm-associated infections.

19.
Antibiotics (Basel) ; 9(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131413

ABSTRACT

Stenotrophomonas maltophilia, an environmental Gram-negative bacterium, is an emerging nosocomial opportunistic pathogen that causes life-threatening infections in immunocompromised patients and chronic pulmonary infections in cystic fibrosis patients. Due to increasing resistance to multiple classes of antibiotics, S. maltophilia infections are difficult to treat successfully. This makes the search for new antimicrobial strategies mandatory. In this study, the antibacterial activity of the heterocyclic corticosteroid deflazacort and several of its synthetic precursors was tested against S. maltophilia. All compounds were not active against standard strain S. maltophilia K279a. The compound PYED-1 (pregnadiene-11-hydroxy-16α,17α-epoxy-3,20-dione-1) showed a weak effect against some S. maltophilia clinical isolates, but exhibited a synergistic effect with aminoglycosides. PYED-1 at sub-inhibitory concentrations decreased S. maltophilia biofilm formation. Quantitative real-time polymerase chain reaction (RT-qPCR) analysis demonstrated that the expression of biofilm- and virulence- associated genes (StmPr1, StmPr3, sphB, smeZ, bfmA, fsnR) was significantly suppressed after PYED-1 treatment. Interestingly, PYED-1 also repressed the expression of the genes aph (3´)-IIc, aac (6´)-Iz, and smeZ, involved in the resistance to aminoglycosides.

20.
Ital J Pediatr ; 46(1): 34, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32183842

ABSTRACT

BACKGROUND: Healthcare-associated infections (HAIs) occur frequently in intensive care units (NICUs). The aim of this study was to analyze the results of surveillance of HAIs in a III level NICU in Naples, Italy during 2013-2017 and to compare with those obtained during 2006-2010. METHODS: The surveillance included 1265 neonates of all birth weight (BW) classes with > 2 days NICU stay. Infections were defined using standard Centers for Disease Control and Prevention definitions adapted to neonatal pathology. RESULTS: A total of 125 HAIs were registered during 2013-2017 with a frequency of 9.9% and an incidence density of 3.2 per 1000 patient days. HAIs occurred in all BW classes with a decreasing trend from the lowest to the highest BW classes (p = < 0.001). Central line-associated blood stream infection (CLABSI) was the most frequent infection (69.6%), followed by ventilator associated pneumonia (VAP) (20%), urinary tract infection (UTI) (8.8%) and necrotizing enterocolitis (NEC) (1.6%). Also, CLABSI and VAP incidence density decreased from lower to highest BW classes showing a significant trend (p = 0.007). Most frequent pathogens responsible for CLABSI were: Coagulase-negative staphylococci (CONS) (25.3%), Candida parapsilosis (21.8%), Pseudomonas aeruginosa (5.7), Escherichia coli and Klebsiella pneumoniae (6.8%). No microbiological diagnosis was achieved for 20.7% of CLABSI. Pseudomonas aeruginosa (28%), Stenotrophomonas maltophilia (20%), and CONS (20%) were the most frequent pathogens responsible for VAP. CLABSI incidence density showed no differences between 2006 and 2010 and 2013-2017, while VAP incidence density for the 751-100 g BW class was higher during 2006-2010 than during 2013-2017 (p = 0.006). A higher incidence of the CLABSI caused by Gram positive bacteria (p = 0.002) or by undetermined etiology (p = 0.01) was observed during 2013-2017 than during 2006-2010, while a significant lower incidence of VAP caused by Gram-negative bacteria was found during 2013-2017 than during 2006-2010 (p = 0.007). CONCLUSION: HAIs in the NICU developed in all BW classes with a decreasing trend from the lowest to the highest BW classes in both study periods. Differences in the aetiology of CLABSI and VAP were found between the two study periods. This reinforces the importance of HAIs surveillance protocol in the NICU, which monitors microbiological isolates and use of medical devices for all BW classes of neonates.


Subject(s)
Cross Infection/epidemiology , Intensive Care Units, Neonatal , Cross Infection/diagnosis , Cross Infection/microbiology , Female , Humans , Incidence , Infant, Newborn , Italy , Length of Stay , Male , Respiration, Artificial , Retrospective Studies , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...