Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 901, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343813

ABSTRACT

Extrinsic control of single neurons and neuronal populations is a powerful approach for understanding how neural circuits function. Adding new thermogenetic tools to existing optogenetic and other forms of intervention will increase the complexity of questions that can be addressed. A good candidate for developing new thermogenetic tools is the Drosophila gustatory receptor family, which has been implicated in high-temperature avoidance behavior. We examined the five members of the Gr28b gene cluster for temperature-dependent properties via three approaches: biophysical characterization in Xenopus oocytes, functional calcium imaging in Drosophila motor neurons, and behavioral assays in adult Drosophila. Our results show that Gr28bD expression in Xenopus oocytes produces a non-specific cationic current that is activated by elevated temperatures. This current is non-inactivating and non-voltage dependent. When expressed in Drosophila motor neurons, Gr28bD can be used to change the firing pattern of individual cells in a temperature-dependent fashion. Finally, we show that pan-neuronal or motor neuron expression of Gr28bD can be used to alter fruit fly behavior with elevated temperatures. Together, these results validate the potential of the Gr28bD gene as a founding member of a new class of thermogenetic tools.


Subject(s)
Cations/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Receptors, Cell Surface/metabolism , TRPC Cation Channels/metabolism , Thermogenesis/physiology , Animals , Animals, Genetically Modified/metabolism , Avoidance Learning/physiology , Locomotion/physiology , Neurons/metabolism , Oocytes/metabolism , Optogenetics/methods , Temperature , Xenopus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...