Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826398

ABSTRACT

Lenia, a cellular automata framework used in artificial life, provides a natural setting to implement mathematical models of cancer incorporating features such as morphogenesis, homeostasis, motility, reproduction, growth, stimuli response, evolvability, and adaptation. Historically, agent-based models of cancer progression have been constructed with rules that govern birth, death and migration, with attempts to map local rules to emergent global growth dynamics. In contrast, Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining an interaction kernel governing density-dependent growth dynamics. Lenia can recapitulate a range of cancer model classifications including local or global, deterministic or stochastic, non-spatial or spatial, single or multi-population, and off or on-lattice. Lenia is subsequently used to develop data-informed models of 1) single-population growth dynamics, 2) multi-population cell-cell competition models, and 3) cell migration or chemotaxis. Mathematical modeling provides important mechanistic insights. First, short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects. Next, we find that asymmetric interaction tumor-immune kernels lead to poor immune response. Finally, modeling recapitulates immune-ECM interactions where patterns of collagen formation provide immune protection, indicated by an emergent inverse relationship between disease stage and immune coverage.

2.
bioRxiv ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38370722

ABSTRACT

Direct observation of immune cell trafficking patterns and tumor-immune interactions is unlikely in human tumors with currently available technology, but computational simulations based on clinical data can provide insight to test hypotheses. It is hypothesized that patterns of collagen formation evolve as a mechanism of immune escape, but the exact nature of the interaction between immune cells and collagen is poorly understood. Spatial data quantifying the degree of collagen fiber alignment in squamous cell carcinomas indicates that late stage disease is associated with highly aligned fibers. Here, we introduce a computational modeling framework (called Lenia) to discriminate between two hypotheses: immune cell migration that moves 1) parallel or 2) perpendicular to collagen fiber orientation. The modeling recapitulates immune-ECM interactions where collagen patterns provide immune protection, leading to an emergent inverse relationship between disease stage and immune coverage. We also illustrate the capabilities of Lenia to model the evolution of tumor progression and immune predation. Lenia provides a flexible framework for considering a spectrum of local (cell-scale) to global (tumor-scale) dynamics by defining a kernel cell-cell interaction function that governs tumor growth dynamics under immune predation with immune cell migration. Mathematical modeling provides important mechanistic insights into cell interactions. Short-range interaction kernels provide a mechanism for tumor cell survival under conditions with strong Allee effects, while asymmetric tumor-immune interaction kernels lead to poor immune response. Thus, the length scale of tumor-immune interactions drives tumor growth and infiltration.

SELECTION OF CITATIONS
SEARCH DETAIL
...