Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 8: 674850, 2021.
Article in English | MEDLINE | ID: mdl-34179166

ABSTRACT

Equine herpesvirus 1 (EHV-1) ubiquitously infects horses worldwide and causes respiratory disease, abortion, and equine herpesvirus myeloencephalopathy. Protection against EHV-1 disease is elusive due to establishment of latency and immune-modulatory features of the virus. These include the modulation of interferons, cytokines, chemokines, antigen presentation, and cellular immunity. Because the modulation of immunity likely occurs at the site of first infection-the respiratory epithelium, we hypothesized that the mucosal influenza vaccine Flu Avert® I.N. (Flu Avert), which is known to stimulate strong antiviral responses, will enhance antiviral innate immunity, and that these responses would also provide protection from EHV-1 infection. To test our hypothesis, primary equine respiratory epithelial cells (ERECs) were treated with Flu Avert, and innate immunity was evaluated for 10 days following treatment. The timing of Flu Avert treatment was also evaluated for optimal effectiveness to reduce EHV-1 replication by modulating early immune responses to EHV-1. The induction of interferons, cytokine and chemokine mRNA expression, and protein secretion was evaluated by high-throughput qPCR and multiplex protein analysis. Intracellular and extracellular EHV-1 titers were determined by qPCR. Flu Avert treatment resulted in the modulation of IL-8, CCL2, and CXCL9 starting at days 5 and 6 post-treatment. Coinciding with the timing of optimal chemokine induction, our data also suggested the same timing for reduction of EHV-1 replication. In combination, our results suggest that Flu Avert may be effective at counteracting some of the immune-modulatory properties of EHV-1 at the airway epithelium and the peak for this response occurs 5-8 days post-Flu Avert treatment. Future in vivo studies are needed to investigate Flu Avert as a prophylactic in situations where EHV-1 exposure may occur.

2.
Viruses ; 13(3)2021 02 24.
Article in English | MEDLINE | ID: mdl-33668216

ABSTRACT

Equine herpesvirus-1 is the cause of respiratory disease, abortion, and equine herpesvirus myeloencephalopathy (EHM) in horses worldwide. EHM affects as many as 14% of infected horses and a cell-associated viremia is thought to be central for EHM pathogenesis. While EHM is infrequent in younger horses, up to 70% of aged horses develop EHM. The aging immune system likely contributes to EHM pathogenesis; however, little is known about the host factors associated with clinical EHM. Here, we used the "old mare model" to induce EHM following EHV-1 infection. Peripheral blood mononuclear cells (PBMCs) of horses prior to infection and during viremia were collected and RNA sequencing with differential gene expression was used to compare the transcriptome of horses that did (EHM group) and did not (non-EHM group) develop clinical EHM. Interestingly, horses exhibiting EHM did not show respiratory disease, while non-EHM horses showed significant respiratory disease starting on day 2 post infection. Multiple immune pathways differed in EHM horses in response to EHV-1. These included an upregulation of IL-6 gene expression, a dysregulation of T-cell activation through AP-1 and responses skewed towards a T-helper 2 phenotype. Further, a dysregulation of coagulation and an upregulation of elements in the progesterone response were observed in EHM horses.


Subject(s)
Herpesviridae Infections/virology , Herpesvirus 1, Equid/immunology , Horse Diseases/immunology , Horse Diseases/virology , Leukocytes, Mononuclear/virology , Transcriptome/genetics , Animals , Female , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling/methods , Herpesviridae Infections/immunology , Horses , Interleukin-6/genetics , Interleukin-6/immunology , Leukocytes, Mononuclear/immunology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/virology , T-Lymphocytes/immunology , T-Lymphocytes/virology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology , Transcriptome/immunology , Up-Regulation/genetics , Up-Regulation/immunology
3.
Pathogens ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33430330

ABSTRACT

Equine herpesvirus 1 (EHV-1) affects horses worldwide and causes respiratory disease, abortions, and equine herpesvirus myeloencephalopathy (EHM). Following infection, a cell-associated viremia is established in the peripheral blood mononuclear cells (PBMCs). This viremia is essential for transport of EHV-1 to secondary infection sites where subsequent immunopathology results in diseases such as abortion or EHM. Because of the central role of PBMCs in EHV-1 pathogenesis, our goal was to establish a gene expression analysis of host and equine herpesvirus genes during EHV-1 viremia using RNA sequencing. When comparing transcriptomes of PBMCs during peak viremia to those prior to EHV-1 infection, we found 51 differentially expressed equine genes (48 upregulated and 3 downregulated). After gene ontology analysis, processes such as the interferon defense response, response to chemokines, the complement protein activation cascade, cell adhesion, and coagulation were overrepresented during viremia. Additionally, transcripts for EHV-1, EHV-2, and EHV-5 were identified in pre- and post-EHV-1-infection samples. Looking at micro RNAs (miRNAs), 278 known equine miRNAs and 855 potentially novel equine miRNAs were identified in addition to 57 and 41 potentially novel miRNAs that mapped to the EHV-2 and EHV-5 genomes, respectively. Of those, 1 EHV-5 and 4 equine miRNAs were differentially expressed in PBMCs during viremia. In conclusion, this work expands our current knowledge about the role of PBMCs during EHV-1 viremia and will inform the focus on future experiments to identify host and viral factors that contribute to clinical EHM.

4.
J Gen Virol ; 98(6): 1439-1454, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28631601

ABSTRACT

Despite the importance of neurological disorders associated with herpesviruses, the mechanism by which these viruses influence the central nervous system (CNS) has not been definitively established. Owing to the limitations of studying neuropathogenicity of human herpesviruses in their natural host, many aspects of their pathogenicity and immune response are studied in animal models. Here, we present an important model system that enables studying neuropathogenicity of herpesviruses in the natural host. Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus that causes a devastating neurological disease (EHV-1 myeloencephalopathy; EHM) in horses. Like other alphaherpesviruses, our understanding of virus neuropathogenicity in the natural host beyond the essential role of viraemia is limited. In particular, information on the role of different viral proteins for virus transfer to the spinal cord endothelium in vivo is lacking. In this study, the contribution of two viral proteins, DNA polymerase (ORF30) and glycoprotein D (gD), to the pathogenicity of EHM was addressed. Furthermore, different cellular immune markers, including alpha-interferon (IFN-α), gamma-interferon (IFN-γ), interleukin-10 (IL-10) and interleukin-1 beta (IL-1ß), were identified to play a role during the course of the disease.


Subject(s)
Biomarkers/analysis , Encephalitis, Viral/pathology , Herpesviridae Infections/complications , Herpesviridae Infections/virology , Herpesvirus 1, Equid/pathogenicity , Host-Pathogen Interactions , Viral Proteins/metabolism , Animals , Female , Herpesviridae Infections/pathology , Horses , Male , Models, Animal , Virulence Factors/metabolism
5.
J Virol Methods ; 248: 44-53, 2017 10.
Article in English | MEDLINE | ID: mdl-28455133

ABSTRACT

Equine herpesvirus 5 (EHV-5) infection is associated with pulmonary fibrosis in horses, but further studies on EHV-5 persistence in equine cells are needed to fully understand viral and host contributions to disease pathogenesis. Our aim was to develop a quantitative PCR (qPCR) assay to measure EHV-5 viral copy number in equine cell cultures, blood lymphocytes, and nasal swabs of horses. Furthermore, we used a recently developed equine primary respiratory cell culture system to study EHV-5 pathogenesis at the respiratory tract. PCR primers and a probe were designed to target gene E11 of the EHV-5 genome. Sensitivity and repeatability were established, and specificity was verified by testing multiple isolates of EHV-5, as well as DNA from other equine herpesviruses. Four-week old fully differentiated (mature), newly seeded (immature) primary equine respiratory epithelial cell (ERECs), and equine dermal cell cultures were inoculated with EHV-5 and the cells and supernatants collected daily for 14days. Blood lymphocytes and nasal swabs were collected from horses experimentally infected with equine herpesvirus 1 (EHV-1). The qPCR assay detected EHV-5 at stable concentrations throughout 14days in inoculated mature EREC and equine dermal cell cultures (peaking at 202 and 5861 viral genomes per 106 cellular ß actin, respectively). EHV-5 copies detected in the immature EREC cultures increased over 14days and reached levels greater than 10,000 viral genomes per 106 cellular ß actin. Moreover, EHV-5 was detected in the lymphocytes of 76% of horses and in the nasal swabs of 84% of horses experimentally infected with EHV-1 pre-inoculation with EHV-1. Post-inoculation with EHV-1, EHV-5 was detected in lymphocytes of 52% of horses while EHV-5 levels in nasal swabs were not significantly different from pre-inoculation levels. In conclusion, qPCR was a reliable technique to investigate viral load in in vivo and in vitro samples, and EHV-5 replication in equine epithelial cells may be influenced by cellular stages of differentiation.


Subject(s)
Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/physiology , Herpesviridae Infections/veterinary , Horse Diseases/virology , Real-Time Polymerase Chain Reaction/methods , Virus Replication , Animals , DNA Replication , DNA, Viral/genetics , Epithelial Cells/virology , Gammaherpesvirinae/genetics , Herpesviridae Infections/virology , Herpesvirus 1, Equid/isolation & purification , Horses , Lymphocytes/virology , Nose/virology , Respiratory System/virology , Viral Load
6.
J Exp Biol ; 218(Pt 9): 1453-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25767145

ABSTRACT

Animals switch gaits according to locomotor speed. In terrestrial locomotion, gaits have been defined according to footfall patterns or differences in center of mass (COM) motion, which characterizes mechanisms that are more general and more predictive than footfall patterns. This has generated different variables designed primarily to evaluate steady-speed locomotion, which is easier to standardize in laboratory conditions. However, in the ecology of an animal, steady-state conditions are rare and the ability to accelerate, decelerate and turn is essential. Currently, there are no data available that have tested whether COM variables can be used in accelerative or decelerative conditions. This study used a data set of kinematics and kinetics of horses using three gaits (walk, trot, canter) to evaluate the effects of acceleration (both positive and negative) on commonly used gait descriptors. The goal was to identify variables that distinguish between gaits both at steady state and during acceleration/deceleration. These variables will either be unaffected by acceleration or affected by it in a predictable way. Congruity, phase shift and COM velocity angle did not distinguish between gaits when the dataset included trials in unsteady conditions. Work (positive and negative) and energy recovery distinguished between gaits and showed a clear relationship with acceleration. Hodographs are interesting graphical representations to study COM mechanics, but they are descriptive rather than quantitative. Force angle, collision angle and collision fraction showed a U-shaped relationship with acceleration and seem promising tools for future research in unsteady conditions.


Subject(s)
Acceleration , Gait , Horses/physiology , Animals , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...