Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 9(3): 1638-1646, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29465736

ABSTRACT

Due to their prebiotic potential indigestible oligosaccharides became a major focus of research interest. In this study the growth of selected probiotic strains including lactobacilli, bifidobacteria, Lactococcus lactis, Streptococcus salivarius ssp. thermophilus, Pediococcus ssp. and Enterococcus faecium with the, raffinose family oligosaccharides (RFOs) raffinose, stachyose and verbascose and galactomannan from guar bean Cyamopsis tetragonoloba (total guar carbohydrates, oligosaccharides (dp 2-4) and polysaccharides (dp > 5), obtained by size exclusion chromatography) were tested by means of turbidity measurements. RFOs were used by 75% of all strains, with some delay for the trisaccharide raffinose and the tetrasaccharide stachyose and a limited fermentation of the pentasaccharide verbascose. L. reuteri, P. pentosaceus and B. lactis HNO19™ were able to ferment not only raffinose and stachyose but also verbascose. Guar oligosaccharides were fermented by 15 out of 20 strains; P. acidilactici, L. acidophilus, L. rhamnosus GG and B. animalis ssp. lactis BB12 metabolized them comparably well as glucose or galactose. Isolated guar polysaccharides were not fermented whereas total guar carbohydrates were fermented by 7 strains, apparently caused by the oligosaccharide content. The findings of this study may be important for functional food products especially for indigestible oligosaccharides which may cause adverse effects in the gut when not cleaved.


Subject(s)
Lactobacillales/metabolism , Mannans/metabolism , Probiotics/metabolism , Raffinose/metabolism , Bacterial Proteins/metabolism , Fermentation , Galactose/analogs & derivatives , Lactobacillales/enzymology , Lactobacillales/growth & development , Oligosaccharides/metabolism , Prebiotics/analysis , beta-Galactosidase/metabolism
2.
Bioprocess Biosyst Eng ; 41(2): 221-228, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29124335

ABSTRACT

Bioavailability of flavonoids is low, especially when occurring as rhamnoglucosides. Thus, the hydrolysis of rutin, hesperidin, naringin and a mixture of narcissin and rutin (from Cyrtosperma johnstonii) by 14 selected probiotics was tested. All strains showed rhamnosidase activity as shown using 4-nitrophenyl α-L-rhamnopyranoside as a substrate. Hesperidin was hydrolysed by 8-27% after 4 and up to 80% after 10 days and narcissin to 14-56% after 4 and 25-97% after 10 days. Rutin was hardly hydrolysed with a conversion rate ranging from 0 to 5% after 10 days. In the presence of narcissin, the hydrolysis of rutin was increased indicating that narcissin acts as an inducer. The rhamnosidase activity as well as the ability to hydrolyse flavonoid rhamnoglucosides was highly strain specific. Naringin was not hydrolysed by rhamnosidase from probiotics, not even by the purified recombinant enzyme, only by fungal rhamnosidase. In conclusion, rhamnosidases from the tested probiotics are substrate specific cleaving hesperidin, narcissin and to a small extent rutin, but not naringin.


Subject(s)
Aspergillus niger/enzymology , Flavonoids/chemistry , Fungal Proteins/chemistry , Glucosides/chemistry , Glycoside Hydrolases/chemistry , Hydrolysis
3.
Biotechnol Bioeng ; 114(11): 2481-2488, 2017 11.
Article in English | MEDLINE | ID: mdl-28671263

ABSTRACT

We have investigated the structures of two native cutinases from Thermobifida cellulosilytica, namely Thc_Cut1 and Thc_Cut2 as well as of two variants, Thc_Cut2_DM (Thc_Cut2_ Arg29Asn_Ala30Val) and Thc_Cut2_TM (Thc_Cut2_Arg19Ser_Arg29Asn_Ala30Val). The four enzymes showed different activities towards the aliphatic polyester poly(lactic acid) (PLLA). The crystal structures of the four enzymes were successfully solved and in combination with Small Angle X-Ray Scattering (SAXS) the structural features responsible for the selectivity difference were elucidated. Analysis of the crystal structures did not indicate significant conformational differences among the different cutinases. However, the distinctive SAXS scattering data collected from the enzymes in solution indicated a remarkable surface charge difference. The difference in the electrostatic and hydrophobic surface properties could explain potential alternative binding modes of the four cutinases on PLLA explaining their distinct activities. Biotechnol. Bioeng. 2017;114: 2481-2488. © 2017 Wiley Periodicals, Inc.


Subject(s)
Actinobacteria/enzymology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/ultrastructure , Molecular Docking Simulation/methods , Polyesters/chemistry , Enzyme Activation , Enzyme Stability , Protein Binding , Protein Conformation , Static Electricity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...