Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
J Nematol ; 54(1): 20220014, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35860508

ABSTRACT

Heterodera carotae, the carrot cyst nematode, is a significant pest affecting carrot globally. Here we present the draft genome of H. carotae, which was generated from short read libraries from Illumina HiSeq technology, and the corresponding genome annotation.

2.
Sci Rep ; 12(1): 9814, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697824

ABSTRACT

There is limited research about the impacts of new nematicides, including fluazaindolizine, fluopyram, and fluensulfone, on the plant-parasitic nematode Meloidogyne incognita, despite it being a pervasive agricultural pest. In this study, M. incognita second-stage juveniles were exposed for 24-h to fluensulfone, fluazaindolizine, fluopyram, and oxamyl and total RNA was extracted and sequenced using next-generation sequencing to determine gene expression. The effects of nematicide exposure on cellular detoxification pathways, common differentially expressed (DE) genes, and fatty acid and retinol-binding genes were examined. Fluopyram and oxamyl had the smallest impacts on the M. incognita transcriptome with 48 and 151 genes that were DE, respectively. These compounds also elicited a weak response in the cellular detoxification pathway and fatty acid and retinol-binding (FAR) genes. Fluensulfone and fluazaindolizine produced robust transcriptional responses with 1208 and 2611 DE genes, respectively. These compounds had strong impacts on cellular detoxification, causing differential regulation of transcription factors and genes in the detox pathway. These compounds strongly down-regulated FAR genes between 52-85%. Having a greater understanding of how these compounds function at a molecular level will help to promote proper stewardship, aid with nematicide discovery, and help to stay a step ahead of nematicide resistance.


Subject(s)
Tylenchoidea , Animals , Antinematodal Agents/pharmacology , Fatty Acids/pharmacology , Tylenchoidea/physiology , Vitamin A/pharmacology
3.
Sci Rep ; 12(1): 9875, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701527

ABSTRACT

Meloidogyne incognita is a destructive and economically important agricultural pest. Similar to other plant-parasitic nematodes, management of M. incognita relies heavily on chemical controls. As old, broad spectrum, and toxic nematicides leave the market, replacements have entered including fluensulfone, fluazaindolizine, and fluopyram that are plant-parasitic nematode specific in target and less toxic to applicators. However, there is limited research into their modes-of-action and other off-target cellular effects caused by these nematicides in plant-parasitic nematodes. This study aimed to broaden the knowledge about these new nematicides by examining the transcriptional changes in M. incognita second-stage juveniles (J2) after 24-h exposure to fluensulfone, fluazaindolizine, and fluopyram as well as oxamyl, an older non-fumigant nematicide. Total RNA was extracted and sequenced using Illumina HiSeq to investigate transcriptional changes in the citric acid cycle, the glyoxylate pathway, [Formula: see text]-fatty acid oxidation pathway, oxidative phosphorylation, and acetylcholine neuron components. Observed transcriptional changes in M. incognita exposed to fluopyram and oxamyl corresponded to their respective modes-of-action. Potential targets for fluensulfone and fluazaindolizine were identified in the [Formula: see text]-fatty acid oxidation pathway and 2-oxoglutarate dehydrogenase of the citric acid cycle, respectively. This study provides a foundation for understanding how potential nematicide resistance could develop, identifies cellular pathways as potential nematicide targets, and determines targets for confirming unknown modes-of-action.


Subject(s)
Tylenchoidea , Animals , Antinematodal Agents/pharmacology , Fatty Acids/pharmacology
4.
Pathogens ; 10(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803698

ABSTRACT

Globodera pallida is among the most significant plant-parasitic nematodes worldwide, causing major damage to potato production. Since it was discovered in Idaho in 2006, eradication efforts have aimed to contain and eradicate G. pallida through phytosanitary action and soil fumigation. In this study, we investigated genome-wide patterns of G. pallida genetic variation across Idaho fields to evaluate whether the infestation resulted from a single or multiple introduction(s) and to investigate potential evolutionary responses since the time of infestation. A total of 53 G. pallida samples (~1,042,000 individuals) were collected and analyzed, representing five different fields in Idaho, a greenhouse population, and a field in Scotland that was used for external comparison. According to genome-wide allele frequency and fixation index (Fst) analyses, most of the genetic variation was shared among the G. pallida populations in Idaho fields pre-fumigation, indicating that the infestation likely resulted from a single introduction. Temporal patterns of genome-wide polymorphisms involving (1) pre-fumigation field samples collected in 2007 and 2014 and (2) pre- and post-fumigation samples revealed nucleotide variants (SNPs, single-nucleotide polymorphisms) with significantly differentiated allele frequencies indicating genetic differentiation. This study provides insights into the genetic origins and adaptive potential of G. pallida invading new environments.

5.
Environ Sci Pollut Res Int ; 28(45): 64166-64180, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33635457

ABSTRACT

Agroecological productivity of the Arganeraie Biosphere Reserve of Morocco is limited by the wide spread and dynamics of plant parasitic nematodes (PPN). Ecological studies of nematode communities are required to develop effective biological management of these bioagressors as conventional control methods of PPN are inadequate and have persistent harmful effects. Fifty-nine organic vegetable soils in Souss-Massa were nematologically sampled, and assessment of taxonomic proliferation was made in relation to host species, geographical origin, and climatic and microclimatic factors. Twenty-four nematode genera were identified as obligate and facultative plant feeders. Taxonomic diversity increased from Chtouka to Taroudant and Tiznit provinces. Soil texture, organic matter, pH, nitrogen, zinc, magnesium, copper, altitude, and humidity and temperature were seen to effect driving roles in the abundance, distribution, and community structures of nematodes. The most prevalent taxa posing a high risk to organic agriculture of Souss Massa were needle nematodes (Longidorus spp.) and root-knot nematodes (Meloidogyne spp.). Edaphic and climatic variables effected nematode populations greatly. A combination of biological treatments and appropriate agroecological practices restricting important economic PPN growth and enhancing soil quality are required to achieve sustainable management in the area.


Subject(s)
Tylenchoidea , Vegetables , Animals , Morocco , Plants , Soil
6.
Plant Dis ; 105(6): 1791-1797, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33174796

ABSTRACT

Phytophthora root rot of raspberry, which is mostly caused by Phytophthora rubi, is a significant issue for the Washington State red raspberry industry. Considered a cool weather pathogen, it is often assumed that it is most active and infective during the cool, wet winters of the region when soil temperatures range from 5 to 10°C; however, there are little data to support this view. More recent research has found that symptoms of root disease during late summer were strongly associated with P. rubi. Therefore, experiments were conducted at four temperatures from 5 to 20°C to evaluate the effects of temperature on P. rubi mycelial growth and sporulation and the effects of both temperature and soil moisture on the pathogenicity of P. rubi on red raspberry. At 20°C, P. rubi grew fastest and sporulated the most heavily. However, disease was most severe at both 15 and 20°C. The soil moisture parameters tested did not affect the pathogenicity results. These results show that P. rubi is more likely to infect during the spring and summer months (from May through September), when soil temperatures are consistently in the range of 15 to 20°C.


Subject(s)
Phytophthora , Rubus , Seasons , Temperature , Virulence
7.
Pest Manag Sci ; 76(6): 2072-2078, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31943776

ABSTRACT

BACKGROUND: It is challenging to manage soilborne pathogens and plant-parasitic nematodes using sustainable practices. Here, we evaluated a novel energy application system, Directed Energy System (DES). This system generates pulses of energy capable of impacting selected biological organisms. The oomycete Phytophthora cinnamomi, the fungus Verticillium dahliae, and the plant-parasitic nematodes Meloidogyne hapla and Globodera ellingtonae were added to soil. Then DES-generated energy was applied to soil and impacts on target organisms were determined. RESULTS: DES applied at 20, 40 and 70 J cm-3 to P. cinnamomi and V. dahliae resulted in ≥50% and 92% reductions (respectively) of propagules per gram of soil in comparison to the untreated control. There was a significant reduction of M. hapla eggs per gram of host tomato root between the untreated control, and 2.2, 13 and 25 J cm-3 DES dosages applied pre- or post-planting. Additionally, an 84% reduction in hatch from G. ellingtonae encysted eggs after treatment with 70 J cm-3 DES was observed. The dosages ranged from 40 or 80V mm-1 for nematodes to 200 V mm-1 for fungi. CONCLUSION: DES-generated energy reduced survival of the soilborne pathogens P. cinnamomi and V. dahlia, and the plant-parasitic nematodes M. hapla and G. ellingtonae. The application of this technology to a field setting remains to be considered. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Pest Management Science published by Wiley Periodicals, Inc. on behalf of © 2020 Society of Chemical Industry.


Subject(s)
Tylenchida , Verticillium , Animals , Soil
8.
J Nematol ; 51: 1-10, 2019.
Article in English | MEDLINE | ID: mdl-31814371

ABSTRACT

Globodera ellingtonae was described from Oregon and Idaho in 2012. Due to the close phylogenetic relationship of this nematode to the potato cyst nematodes G. pallida and G. rostochiensis, and evidence that G. ellingtonae reproduces on potato (Solanum tuberosum), potential damaging effects to potato by this nematode are of great concern. To evaluate the pathogenic effects of G. ellingtonae on potato, five field and two microplot trials were conducted over a four-year period including comparisons of a range of G. ellingtonae initial population densities (Pi) and potato cultivars. In two field trials, potato 'Russet Burbank' was inoculated with Pi of G. ellingtonae ranging from 0 to 80 eggs/g soil; a similar trial was conducted with potato 'Désirée.' In another field trial, potato cultivars varying in maturity lengths were either inoculated (80 eggs/g soil) or not with G. ellingtonae. In a final field trial, 'Ranger Russet' was inoculated with Pi of G. ellingtonae ranging from 0 to 360 eggs/g soil. Additionally, Russet Burbank was inoculated with G. ellingtonae Pi ranging from 0 to 169 eggs/g soil in microplots. In all trials, data on tuber yield, aboveground biomass, final eggs/cyst, final population densities (Pf), and reproduction factor (RF = Pf/Pi) were collected. In only two of six trials conducted with increasing levels of Pi, was there a significant negative correlation between Pi of G. ellingtonae and yield of potato. Based on the linear regression model of tuber yield on logPi for Russet Burbank, 30.5 to 40.9% yield loss was predicted at a Pi of 40 and 80 eggs/g soil, respectively, and for Ranger Russet, 16.5 and 19.7% yield loss was predicted at a Pi of 40 and 80 eggs/g soil, respectively. None of the potato cultivars inoculated with 80 G. ellingtonae eggs/g soil had significantly reduced yields compared to non-inoculated plants. Reproduction factor values across trials ranged from 4.0 to 8.3 when inoculated with Pi of 40 eggs/g soil, demonstrating that the nematode successfully invaded and reproduced on potato in all trials. Care should be taken in extrapolating the results from these experiments conducted in Oregon to probable effects of G. ellingtonae on potato in other environments.KeywordsPotato, Damage, Globodera, Regression.Globodera ellingtonae was described from Oregon and Idaho in 2012. Due to the close phylogenetic relationship of this nematode to the potato cyst nematodes G. pallida and G. rostochiensis, and evidence that G. ellingtonae reproduces on potato (Solanum tuberosum), potential damaging effects to potato by this nematode are of great concern. To evaluate the pathogenic effects of G. ellingtonae on potato, five field and two microplot trials were conducted over a four-year period including comparisons of a range of G. ellingtonae initial population densities (Pi) and potato cultivars. In two field trials, potato 'Russet Burbank' was inoculated with Pi of G. ellingtonae ranging from 0 to 80 eggs/g soil; a similar trial was conducted with potato 'Désirée.' In another field trial, potato cultivars varying in maturity lengths were either inoculated (80 eggs/g soil) or not with G. ellingtonae. In a final field trial, 'Ranger Russet' was inoculated with Pi of G. ellingtonae ranging from 0 to 360 eggs/g soil. Additionally, Russet Burbank was inoculated with G. ellingtonae Pi ranging from 0 to 169 eggs/g soil in microplots. In all trials, data on tuber yield, aboveground biomass, final eggs/cyst, final population densities (Pf), and reproduction factor (RF = Pf/Pi) were collected. In only two of six trials conducted with increasing levels of Pi, was there a significant negative correlation between Pi of G. ellingtonae and yield of potato. Based on the linear regression model of tuber yield on logPi for Russet Burbank, 30.5 to 40.9% yield loss was predicted at a Pi of 40 and 80 eggs/g soil, respectively, and for Ranger Russet, 16.5 and 19.7% yield loss was predicted at a Pi of 40 and 80 eggs/g soil, respectively. None of the potato cultivars inoculated with 80 G. ellingtonae eggs/g soil had significantly reduced yields compared to non-inoculated plants. Reproduction factor values across trials ranged from 4.0 to 8.3 when inoculated with Pi of 40 eggs/g soil, demonstrating that the nematode successfully invaded and reproduced on potato in all trials. Care should be taken in extrapolating the results from these experiments conducted in Oregon to probable effects of G. ellingtonae on potato in other environments.KeywordsPotato, Damage, Globodera, Regression.

9.
Annu Rev Phytopathol ; 57: 117-133, 2019 08 25.
Article in English | MEDLINE | ID: mdl-31100997

ABSTRACT

The potato cyst nematodes (PCNs) Globodera rostochiensis and Globodera pallida are internationally recognized quarantine pests. Although not widely distributed in either the United States or Canada, both are present and are regulated by the national plant protection organizations (NPPOs) of each country. G. rostochiensis was first discovered in New York in the 1940s, and G. pallida was first detected in a limited area of Idaho in 2006. In Canada, G. rostochiensis and G. pallida were first detected in Newfoundland in 1962 and 1977, respectively, and further detections of G. rostochiensis occurred in British Columbia and Québec, most recently in 2006. Adherence to a stringent NPPO-agreed-upon phytosanitary program has prevented the spread of PCNs to other potato-growing areas in both countries. The successful research and regulatory PCN programs in both countries rely on a network of state, federal, university, and private industry cooperatorspursuing a common goal of containment, management/eradication, and regulation. The regulatory and research efforts of these collaborative groups spanning from the 1940s to the present are highlighted in this review.


Subject(s)
Solanum tuberosum , Tylenchoidea , Animals , North America
10.
Front Microbiol ; 10: 964, 2019.
Article in English | MEDLINE | ID: mdl-31134014

ABSTRACT

The bacterial endosymbiont Wolbachia interacts with different invertebrate hosts, engaging in diverse symbiotic relationships. Wolbachia is often a reproductive parasite in arthropods, but an obligate mutualist in filarial nematodes. Wolbachia was recently discovered in plant-parasitic nematodes, and, is thus far known in just two genera Pratylenchus and Radopholus, yet the symbiont's function remains unknown. The occurrence of Wolbachia in these economically important plant pests offers an unexplored biocontrol strategy. However, development of Wolbachia-based biocontrol requires an improved understanding of symbiont-host functional interactions and the symbiont's prevalence among nematode field populations. This study used a molecular-genetic approach to assess the prevalence of a Wolbachia lineage (wPpe) in 32 field populations of Pratylenchus penetrans. Populations were examined from eight different plant species in Washington, Oregon, and California. Nematodes were also screened for the endosymbiotic bacterium Cardinium (cPpe) that was recently shown to co-infect P. penetrans. Results identified wPpe in 9/32 and cPpe in 1/32 of P. penetrans field populations analyzed. No co-infection was observed in field populations. Wolbachia was detected in nematodes from 4/8 plant-hosts examined (raspberry, strawberry, clover, and lily), and in all three states surveyed. Cardinium was detected in nematodes from mint in Washington. In the wPpe-infected P. penetrans populations collected from raspberry, the prevalence of wPpe infection ranged from 11 to 58%. This pattern is unlike that in filarial nematodes where Wolbachia is an obligate mutualist and occurs in 100% of the host. Further analysis of wPpe-infected populations revealed female-skewed sex ratios (up to 96%), with the degree of skew positively correlating with wPpe prevalence. Uninfected nematode populations had approximately equal numbers of males and females. Comparisons of 54 wPpe 16S ribosomal RNA sequences revealed high similarity across the geographic isolates, with 45 of 54 isolates being identical at this locus. The complete absence of wPpe among some populations and low prevalence in others suggest that this endosymbiont is not an obligate mutualist of P. penetrans. The observed sex ratio bias in wPpe-infected nematode populations is similar to that observed in arthropods where Wolbachia acts as a reproductive manipulator, raising the question of a similar role in plant-parasitic nematodes.

11.
Phytopathology ; 109(9): 1605-1613, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31033406

ABSTRACT

Meloidogyne species are one of the most important groups of plant-parasitic nematodes globally because of their ability to damage most cultivated plants. Although they are widespread and economically important, there are limited control measures to combat these nematodes. New nonfumigant nematicides have been discovered that have the potential to be widely utilized for the management of plant-parasitic nematodes. Because of the longer half-lives in soil and lower toxicity of new nematicides compared with traditional fumigant and nonfumigant nematicides, understanding how nematodes respond to sublethal doses of nematicides is imperative to understanding whether nematicide resistance has the potential to develop. Characterizing responses of nematodes to sublethal doses will provide the foundation for future work, such as gene expression studies. In this study, the nematicides oxamyl (Vydate), fluazaindolizine (Salibro), fluensulfone (Nimitz), and fluopyram (Velum), were evaluated to understand how sublethal doses affect the fecundity and mobility of Meloidogyne incognita second-stage juveniles (J2). Using a microwell assay system, dose-response curves for each nematicide were established for M. incognita J2. Fluopyram was the most toxic nematicide, with effective doses up to 230 times lower than that of other nematicides. The other nematicides had predicted ED50 values (effective doses that resulted in 50% of the population becoming inactive) of 89.4, 131.7, and 180.6 ppm for oxamyl, fluensulfone, and fluazaindolizine, respectively. The 24-h ED50 of each nematicide was then used in both motility and infectivity assays. The motility and activity of M. incognita J2 exposed to ED50 doses of fluazaindolizine and fluensulfone was significantly reduced, with nematodes initially being motile but eventually becoming inactive. However, the motility of M. incognita J2 exposed to ED50 doses of fluopyram and oxamyl was not different from a water control. In a pot assay, M. incognita J2 exposed to ED50 doses of fluazaindolizine, oxamyl, and fluensulfone were unable to reproduce on tomato, with reproduction factors (RF = final population density/initial population density) of 0 to 0.03. Fluopyram did not reduce reproduction of M. incognita, with a mean RF of 38.7 ± 4.5, which was similar to the RF of 46.3 ± 4.6 for the water control. This study is the first comprehensive evaluation of M. incognita activity, motility, and fecundity after exposure to the traditional nematicide, oxamyl, as well as three new nematicides, fluazaindolizine, fluopyram, and fluensulfone.


Subject(s)
Pesticides , Solanum lycopersicum , Tylenchoidea , Animals , Antinematodal Agents/pharmacology , Plant Diseases , Tylenchoidea/drug effects
12.
Plant Dis ; 103(5): 966-971, 2019 May.
Article in English | MEDLINE | ID: mdl-30840841

ABSTRACT

Meloidogyne hapla is the most prevalent plant-parasitic nematode in Washington state wine grape vineyards. Understanding the developmental dynamics of M. hapla can improve the timing of diagnostic sampling and nematicide application. Three Vitis vinifera vineyards in Washington were sampled March 2015 to March 2017 to determine the developmental dynamics of M. hapla by measuring second-stage juveniles (J2) in soil, eggs and adult females in roots, and fine root tips. A model of M. hapla J2 development based on soil growing degree days using a base temperature (Tb) of 0°C (GDDsoil) and a start date of 1 March was developed. This model was validated at two additional vineyards in Washington and was robust with R2 values > 0.74. M. hapla has one generation per year and overwinters primarily as the J2 infective stage. Juvenile populations declined after 1 March, reaching their lowest density in early July and reaching a maximum density over the winter. M. hapla egg and root tip densities reached a maximum in early August. The number of females per root tip did not vary throughout the year. A single generation with defined peaks in J2 population densities will allow for specific timing of nematicide interventions.


Subject(s)
Tylenchoidea , Vitis , Animals , Antinematodal Agents , Female , Plant Roots/parasitology , Time Factors , Tylenchoidea/growth & development , Vitis/parasitology , Washington , Wine
13.
J Nematol ; 512019.
Article in English | MEDLINE | ID: mdl-34179798

ABSTRACT

Radopholus similis is an economically important pest of both banana and citrus in tropical regions. Here we present draft genomes from two populations of R. similis from Costa Rica that were created and assembled using short read libraries from Illumina HiSeq technology.

14.
Front Microbiol ; 9: 2482, 2018.
Article in English | MEDLINE | ID: mdl-30459726

ABSTRACT

Wolbachia and Cardinium are among the most important and widespread of all endosymbionts, occurring in nematodes and more than half of insect and arachnid species, sometimes as coinfections. These symbionts are of significant interest as potential biocontrol agents due to their abilities to cause major effects on host biology and reproduction through cytoplasmic incompatibility, sex ratio distortion, or obligate mutualism. The ecological and metabolic effects of coinfections are not well understood. This study examined a Wolbachia-Cardinium coinfection in the plant-parasitic nematode (PPN), Pratylenchus penetrans, producing the first detailed study of such a coinfection using fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR), and comparative genomic analysis. Results from FISH and single-nematode PCR showed 123/127 individuals in a focal population carried Cardinium (denoted strain cPpe), and 48% were coinfected with Wolbachia strain wPpe. Both endosymbionts showed dispersed tissue distribution with highest densities in the anterior intestinal walls and gonads. Phylogenomic analyses confirmed an early place of cPpe and long distance from a sister strain in another PPN, Heterodera glycines, supporting a long history of both Cardinium and Wolbachia in PPNs. The genome of cPpe was 1.36 Mbp with 35.8% GC content, 1,131 predicted genes, 41% having no known function, and missing biotin and lipoate synthetic capacity and a plasmid present in other strains, despite having a slightly larger genome compared to other sequenced Cardinium. The larger genome revealed expansions of gene families likely involved in host-cellular interactions. More than 2% of the genes of cPpe and wPpe were identified as candidate horizontally transferred genes, with some of these from eukaryotes, including nematodes. A model of the possible Wolbachia-Cardinium interaction is proposed with possible complementation in function for pathways such as methionine and fatty acid biosynthesis and biotin transport.

15.
Plant Dis ; 102(11): 2120-2128, 2018 11.
Article in English | MEDLINE | ID: mdl-30156963

ABSTRACT

In the United States, potato cyst nematodes Globodera rostochiensis and G. pallida are quarantined pests. A new cyst nematode species, Globodera ellingtonae, discovered in Oregon and Idaho, reproduces well on potato but is not currently a quarantine pest. Identifying resistance to all three Globodera spp. would provide a valuable management tool. Thirteen breeding clones and nine cultivars were evaluated in Oregon, Idaho, and New York laboratories where the nematode populations are maintained. Minitubers or tissue culture plants were planted into pots and inoculated with eggs in replicated experiments. Results indicated that five entries were partially resistant or resistant to all three species, while another five were resistant or partially resistant to G. rostochiensis and G. ellingtonae. Resistance to G. rostochiensis pathotypes Ro1 and Ro4 is controlled by the H1 gene and this study suggests that H1 may confer resistance to G. ellingtonae as well. Observed resistance to G. pallida was lower relative to the levels of resistance observed for G. rostochiensis and G. ellingtonae. Germplasm with G. pallida or G. ellingtonae resistance will be used in hybridizations to develop russet-skinned cultivars with long tubers which represent the predominant market class in western U.S. production, and to further explore the basis of potato resistance to Globodera spp.


Subject(s)
Disease Resistance/genetics , Plant Diseases/immunology , Solanum tuberosum/genetics , Tylenchoidea/physiology , Animals , Plant Breeding , Plant Diseases/parasitology , Solanum tuberosum/immunology , Solanum tuberosum/parasitology
16.
Plant Dis ; 102(5): 938-947, 2018 May.
Article in English | MEDLINE | ID: mdl-30673387

ABSTRACT

Sixty percent of the $109 million processed red raspberry industry of the United States occurs in northern Washington State. In 2012, late-summer symptoms of vascular wilt and root disease were observed in many raspberry plantings. These symptoms were initially attributed to Verticillium dahliae. However, diagnostic tests for the pathogen were often contradictory and other soilborne pathogens (Phytophthora rubi and Pratylenchus penetrans) or Raspberry bushy dwarf virus (RBDV) might also have been involved. Therefore, a survey was conducted in 2013 and 2014 to (i) establish the incidence and soil population levels of V. dahliae in red raspberry production fields, (ii) compare among diagnostic methods and laboratories for detecting and quantifying V. dahliae from raspberry field soil, and (iii) assess which pathogens are associated with late-summer disease symptoms of raspberry. Plant and soil samples were collected from 51 disease sites and 20 healthy sites located in 24 production fields. Samples were analyzed for the presence and quantity of each pathogen using traditional plating and extraction methods (V. dahliae, P. rubi, and P. penetrans), quantitative polymerase chain reaction (qPCR) (V. dahliae and P. rubi), and enzyme-linked immunosorbent assay (RBDV). Results showed that V. dahliae was present in 88% of the production fields and that detection of the pathogen differed by method and by laboratory: qPCR detected V. dahliae in the soil from approximately three times as many sites (51 of 71 total sites) as by plating on NP10 semi-selective medium (15 of 71 total sites). Soil populations of V. dahliae were slightly greater at disease sites, but the pathogen was detected with similar frequency from healthy sites and it was rarely isolated from diseased plants (4%). P. rubi, P. penetrans, and RBDV were also common in production fields (79, 91, and 53% of fields, respectively). Both P. rubi (soil and root samples) and P. penetrans (root populations only), but not RBDV, were more frequently found at disease sites than healthy sites, and the amount of P. rubi detected by qPCR was greater from disease sites than healthy sites. In addition, P. rubi was isolated from 27% of the symptomatic plants located at disease sites. Regardless of detection method, V. dahliae, P. rubi, and P. penetrans, either with or without RBDV, were more likely to co-occur at disease sites (73%) than healthy sites (35%), suggesting that a soilborne disease complex is present in raspberry production fields. Results indicate that P. rubi is the primary pathogen most strongly associated with late-summer symptoms of disease, but root populations of P. penetrans and higher soil populations of V. dahliae may also be of concern. Therefore, disease control methods should focus on all three soilborne pathogens.


Subject(s)
Phytophthora/physiology , Plant Diseases/microbiology , Plant Diseases/parasitology , Rubus , Seasons , Verticillium/physiology , Animals , Nematoda , Plant Diseases/virology , Plant Viruses , Washington
17.
J Nematol ; 49(2): 127-128, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28706309

ABSTRACT

Globodera ellingtonae is a newly described potato cyst nematode (PCN) found in Idaho, Oregon, and Argentina. Here, we present a genome assembly for G. ellingtonae, a relative of the quarantine nematodes G. pallida and G. rostochiensis, produced using data from Illumina and Pacific Biosciences DNA sequencing technologies.

18.
J Nematol ; 49(2): 129-130, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28706310

ABSTRACT

Globodera ellingtonae is a newly described cyst nematode found in Idaho, Oregon, and Argentina. Here we present the first transcriptome assembly of G. ellingtonae, providing a valuable resource for comparing the evolution of expressed genes between potato cyst nematode species.

19.
Mol Plant Microbe Interact ; 30(10): 767-769, 2017 10.
Article in English | MEDLINE | ID: mdl-28682157

ABSTRACT

Phytophthora rubi and P. fragariae are two closely related oomycete plant pathogens that exhibit strong morphological and physiological similarities but are specialized to infect different hosts of economic importance, namely, raspberry and strawberry. Here, we report the draft genome sequences of these two Phytophthora species as a first step toward understanding the genomic processes underlying plant host adaptation in these pathogens.


Subject(s)
Fragaria/microbiology , Genome , Phytophthora/genetics , Rubus/microbiology , Whole Genome Sequencing , Base Sequence
20.
J Nematol ; 49(4): 437-445, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29353933

ABSTRACT

The eradication program for the potato cyst nematode (PCN), Globodera pallida, in the Northwest of the United States revolves around the use of soil fumigation. Alternative, integrated strategies are needed to continue to battle this invasive nematode. Laboratory, greenhouse, and field experiments were conducted with G. pallida and another cyst nematode found in the United States, Globodera ellingtonae, to evaluate the efficacy of a new formulated Brassica juncea seed meal extract, as well as a traditional B. juncea seed meal, as alternate eradication strategies. This is the first report on the efficacy of B. juncea seed meal extract against plant-parasitic nematodes. Rates of B. juncea seed meal greater than 2.2 t/ha and 4.5 t/ha for G. pallida and G. ellingtonae, respectively, were required for egg hatch suppression, as determined by a potato root diffusate (PRD) bioassay. Reproduction of G. pallida on potato after exposure to B. juncea seed meal at a rate of 2.2 t/ha was also significantly reduced. In the field, 8.9 t/ha B. juncea seed meal almost eliminated egg hatch of G. ellingtonae. Rates needed for Globodera spp. suppression were greatly reduced when using the B. juncea seed meal extract. When compared side-by-side, half as much B. juncea seed meal extract, 1.1 t/ha, was required to suppress G. ellingtonae egg hatch to the same extent as B. juncea seed meal. Exposure of G. pallida to B. juncea seed meal extract at 4.5 t/ha reduced egg hatch by 90% compared with a nonamended control. The ability to reduce the amount of material being applied to soil by using an extract has the potential for integration into a G. pallida eradication program.

SELECTION OF CITATIONS
SEARCH DETAIL
...