Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38337268

ABSTRACT

Hybrid porous polymers based on poly-EGDMA and polylactide containing vancomycin, the concentration of which in the polymer varied by two orders of magnitude, were synthesized. The processes of polymer biodegradation and vancomycin release were studied in the following model media: phosphate-buffered saline (PBS), trypsin-Versene solution, and trypsin-PBS solution. The maximum antibiotic release was recorded during the first 3 h of extraction. The duration of antibiotic escape from the polymer samples in trypsin-containing media varied from 3 to 22 days, depending on the antibiotic content of the polymer. Keeping samples of the hybrid polymer in trypsin-containing model media resulted in acidification of the solutions-after 45 days, up to a pH of 1.84 in the trypsin-Versene solution and up to pH 1.65 in the trypsin-PBS solution. Here, the time dependences of the vancomycin release from the polymer into the medium and the decrease in pH of the medium correlated. These data are also consistent with the results of a study of the dynamics of sample weight loss during extraction in the examined model media. However, while the polymer porosity increased from ~53 to ~60% the pore size changed insignificantly, over only 10 µm. The polymer samples were characterized by their antibacterial activity against Staphylococcus aureus, and this activity persisted for up to 21 days during biodegradation of the material, regardless of the medium type used in model. Surface-dependent human cells (dermal fibroblasts) adhere well, spread out, and maintain high viability on samples of the functionalized hybrid polymer, thus demonstrating its biocompatibility in vitro.

2.
Macromol Biosci ; 21(5): e2000402, 2021 05.
Article in English | MEDLINE | ID: mdl-33759338

ABSTRACT

Porous polymer materials derived from poly(ethylene glycol dimethacrylate) (poly-EGDMA) and antibiotic containing polylactide (PLA) are obtained for the first time. Porous poly-EGDMA monoliths with a system of open interconnected pores are synthesized by a visible light-induced radical polymerization of EGDMA in the presence of 70 wt% of porogenic agent, e.g., 1-butanol, 1-hexanol, 1-octanol, or cyclohexanol. The porosity of the obtained polymers is 75-78%. A modal pore size depends on the nature of the porogen and varies from 0.5 µm (cyclohexanol) to 12 µm (1-butanol). The polymer matrix made with 1-butanol features the presence of pores ranging from 1 to 100 µm. The pore surface of poly-EGDMA matrices is inlayered with poly-D,L-lactide (Mn  23 × 103  Da, PDI 1.31). The PLA-modified poly-EGDMA retains a porous structure that is similar to the initial poly-EGDMA but with improved strength characteristics. The presence of antibiotic containing PLA ensures a high and continuous antibacterial activity of the hybrid polymeric material for 7 days. The nontoxicity of all the porous matrices studied makes them promising for clinical tests as osteoplastic materials.


Subject(s)
Anti-Bacterial Agents/chemistry , Methacrylates/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Tissue Scaffolds , Coated Materials, Biocompatible , In Vitro Techniques , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Porosity , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...