Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 450(7170): 641-5, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046396

ABSTRACT

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.

2.
Nature ; 450(7170): 637-40, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046395

ABSTRACT

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.

3.
Nature ; 450(7170): 646-9, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046397

ABSTRACT

Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60-100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar-antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90-120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the 'cryosphere' above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago. HDO/H2O is enhanced by a factor of approximately 2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80-90 km for which we have no explanation.

4.
Nature ; 438(7068): 623-7, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16319882

ABSTRACT

The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.


Subject(s)
Aluminum Silicates/analysis , Aluminum Silicates/chemistry , Climate , Extraterrestrial Environment/chemistry , Mars , Clay , Hydrogen-Ion Concentration , Iron/analysis , Magnesium/analysis , Space Flight , Spacecraft , Sulfates/analysis , Sulfates/chemistry , Water/analysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...